Effect of salts on the Co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae

被引:73
|
作者
Casey, Elizabeth [1 ,5 ]
Mosier, Nathan S. [1 ,5 ]
Adamec, Jiri [3 ]
Stockdale, Zachary [4 ]
Ho, Nancy [1 ,2 ]
Sedlak, Miroslav [1 ,5 ]
机构
[1] Purdue Univ, Renewable Resources Engn Lab, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Chem Engn, W Lafayette, IN 47907 USA
[3] Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA
[4] Univ Illinois, Dept Chem, Champaign, IL 61820 USA
[5] Purdue Univ, Dept Agr & Biol Engn, W Lafayette, IN 47907 USA
来源
关键词
Yeast (S. cerevisiae); Xylose; Inhibition; Salt; Ethanol; Fermentation; CHROMATOGRAPHY-MASS SPECTROMETRY; ETHANOL-PRODUCTION; ZYMOMONAS-MOBILIS; ACETIC-ACID; YEAST; INHIBITION; COFERMENTATION; DETOXIFICATION; PRETREATMENT; METABOLITES;
D O I
10.1186/1754-6834-6-83
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: A challenge currently facing the cellulosic biofuel industry is the efficient fermentation of both C5 and C6 sugars in the presence of inhibitors. To overcome this challenge, microorganisms that are capable of mixed-sugar fermentation need to be further developed for increased inhibitor tolerance. However, this requires an understanding of the physiological impact of inhibitors on the microorganism. This paper investigates the effect of salts on Saccharomyces cerevisiae 424A(LNH-ST), a yeast strain capable of effectively co-fermenting glucose and xylose. Results: In this study, we show that salts can be significant inhibitors of S. cerevisiae. All 6 pairs of anions (chloride and sulfate) and cations (sodium, potassium, and ammonium) tested resulted in reduced cell growth rate, glucose consumption rate, and ethanol production rate. In addition, the data showed that the xylose consumption is more strongly affected by salts than glucose consumption at all concentrations. At a NaCl concentration of 0.5M, the xylose consumption rate was reduced by 64.5% compared to the control. A metabolomics study found a shift in metabolism to increased glycerol production during xylose fermentation when salt was present, which was confirmed by an increase in extracellular glycerol titers by 4 fold. There were significant differences between the different cations. The salts with potassium cations were the least inhibitory. Surprisingly, although salts of sulfate produced twice the concentration of cations as compared to salts of chloride, the degree of inhibition was the same with one exception. Potassium salts of sulfate were less inhibitory than potassium paired with chloride, suggesting that chloride is more inhibitory than sulfate. Conclusions: When developing microorganisms and processes for cellulosic ethanol production, it is important to consider salt concentrations as it has a significant negative impact on yeast performance, especially with regards to xylose fermentation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Effect of salts on the Co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae
    Elizabeth Casey
    Nathan S Mosier
    Jiri Adamec
    Zachary Stockdale
    Nancy Ho
    Miroslav Sedlak
    Biotechnology for Biofuels, 6
  • [2] Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae
    Aeling, Kimberly A.
    Salmon, Kirsty A.
    Laplaza, Jose M.
    Li, Ling
    Headman, Jennifer R.
    Hutagalung, Alex H.
    Picataggio, Stephen
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2012, 39 (11) : 1597 - 1604
  • [3] Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae
    Ha, Suk-Jin
    Kim, Soo Rin
    Kim, Heejin
    Du, Jing
    Cate, Jamie H. D.
    Jin, Yong-Su
    BIORESOURCE TECHNOLOGY, 2013, 149 : 525 - 531
  • [4] Genetically Engineered Saccharomyces cerevisiae Strain That Can Ultilize Both Xylose and Glucose for Fermentation
    Ge, Jingping
    Zhang, Luyan
    Ping, Wenxiang
    Zhang, Mengyun
    Shen, Yan
    Song, Gang
    RENEWABLE ENERGY AND ENVIRONMENTAL TECHNOLOGY, PTS 1-6, 2014, 448-453 : 1637 - 1643
  • [5] Recombinant Diploid Saccharomyces cerevisiae Strain Development for Rapid Glucose and Xylose Co-Fermentation
    Liu, Tingting
    Huang, Shuangcheng
    Geng, Anli
    FERMENTATION-BASEL, 2018, 4 (03):
  • [6] Engineered Saccharomyces cerevisiae harbors xylose isomerase and xylose transporter improves co-fermentation of xylose and glucose for ethanol production
    Huang, Mengtian
    Cui, Xinxin
    Zhang, Peining
    Jin, Zhuocheng
    Li, Huanan
    Liu, Jiashu
    Jiang, Zhengbing
    PREPARATIVE BIOCHEMISTRY & BIOTECHNOLOGY, 2024, 54 (08): : 1058 - 1067
  • [7] Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation
    Li, Yun-Cheng
    Gou, Zi-Xi
    Zhang, Ying
    Xia, Zi-Yuan
    Tang, Yue-Qin
    Kida, Kenji
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2017, 48 (04) : 791 - 800
  • [8] Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters
    Goncalves, Davi L.
    Matsushika, Akinori
    de Sales, Belisa B.
    Goshima, Tetsuya
    Bon, Elba P. S.
    Stambuk, Boris U.
    ENZYME AND MICROBIAL TECHNOLOGY, 2014, 63 : 13 - 20
  • [9] Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery
    Hoang Nguyen Tran, Phuong
    Ko, Ja Kyong
    Gong, Gyeongtaek
    Um, Youngsoon
    Lee, Sun-Mi
    BIOTECHNOLOGY FOR BIOFUELS, 2020, 13 (01)
  • [10] Improved simultaneous co-fermentation of glucose and xylose by Saccharomyces cerevisiae for efficient lignocellulosic biorefinery
    Phuong Hoang Nguyen Tran
    Ja Kyong Ko
    Gyeongtaek Gong
    Youngsoon Um
    Sun-Mi Lee
    Biotechnology for Biofuels, 13