Convex-transitivity and function spaces

被引:3
|
作者
Talponen, Jarno [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
关键词
Vector-valued function spaces; Transitive; Almost transitive; Convex-transitive; Rotation problem; BANACH-SPACES; CONJECTURE;
D O I
10.1016/j.jmaa.2008.02.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that if X is it convex-transitive Banach space and 1 <= p < infinity, then L-p([0, 1], X) and L-s(infinity)([0, 1], X) are convex-transitive. Here L-s(infinity)([0, 1], X) is the closed linear span of the simple functions in the Bochner space L-infinity([0, 1], X). If H is all infinite-dimensional Hilbert space and C-0(L) is convex-transitive, then C-0(L, H) is convex-transitive. Some new fairly concrete examples of convex-transitive spaces are provided. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:537 / 549
页数:13
相关论文
共 50 条