An effective hybrid approach for Dynamic State Estimation in power system

被引:0
|
作者
Han, L. [1 ]
Han, X. S. [1 ]
Chen, F. [1 ]
Zha, H. [1 ]
机构
[1] Shandong Univ, Sch Elect Engn, Jinan, Peoples R China
关键词
adaptive filters; Dynamic State Estimation; Kalman filtering power systems; Support Vector Machines;
D O I
10.1109/DRPT.2008.4523566
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Power System Dynamic State Estimation(DSE) considers statistical characters of systemic state variables in past period, has functions of state estimation and forecasting, posses predominance that static estimation hasn't in terms of theory and practicability. On the basis of farther study at DSE theory and method, a general framework for self-adapting dynamic estimator is presented here to improve the forecasting and filtering models. Forecasting model uses ultra-short term multi-node load forecasting technique to increase state forecasting accuracy. Filtering model adopts Least Square Support Vector Machines (LS-SVM) technique, whose nonlinear functions fitting performance is stronger than traditional Artificial Neutral Network (ANN), to find an adaptive dynamic filter. It makes a satisfying result in actual application for power system control center of Shandong province.
引用
收藏
页码:1072 / 1076
页数:5
相关论文
共 50 条
  • [1] M-Estimation Based Robust Approach for Hybrid Dynamic State Estimation in Power Systems
    Kundu S.
    Alam M.
    Roy B.K.S.
    Thakur S.S.
    [J]. Micro and Nanosystems, 2022, 14 (04) : 358 - 368
  • [2] A Data-driven Approach to Power System Dynamic State Estimation
    Kumari, Deepika
    Bhattacharyya, S. P.
    [J]. 2017 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEM APPLICATION TO POWER SYSTEMS (ISAP), 2017,
  • [3] Hybrid method for power system state estimation
    Risso, Mariano
    Jose Rubiales, Aldo
    Andres Lotito, Pablo
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2015, 9 (07) : 636 - 643
  • [4] Adaptive Power System Hybrid State Estimation
    Padmanaban, Manikandan
    Sinha, Avinash K.
    [J]. 2014 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT ASIA), 2014, : 680 - 685
  • [5] POWER SYSTEM TRACKING AND DYNAMIC STATE ESTIMATION
    Jain, Amit
    Shivakumar, N. R.
    [J]. 2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 277 - +
  • [6] Dynamic state estimation of an electric power system
    Ortiz, Gabriel A.
    Graciela Colome, D.
    [J]. 2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE - LATIN AMERICA (ISGT LATIN AMERICA), 2017,
  • [7] Dynamic State Estimation for Power System Control and Protection IEEE Task Force on Power System Dynamic State and Parameter Estimation
    Liu, Yu
    Singh, Abhinav Kumar
    Zhao, Junbo
    Meliopoulos, A. P. Sakis
    Pal, Bikash
    Ariff, Mohd Aifaa bin Mohd
    Van Cutsem, Thierry
    Glavic, Mevludin
    Huang, Zhenyu
    Kamwa, Innocent
    Mili, Lamine
    Mir, Abdul Saleem
    Taha, Ahmad
    Terzija, Vladimir
    Yu, Shenglong
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (06) : 5909 - 5921
  • [8] A New State Updating Approach in Power System Dynamic State Estimation Considering Correlated Measurements
    Lu, Zigang
    Gong, Dan
    Sun, Yonghui
    Huo, Zhengjie
    [J]. 2017 EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2017, : 342 - 347
  • [9] A new approach to dynamic state estimation of power systems
    Prasad, GD
    Thakur, SS
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 1998, 45 (03) : 173 - 180
  • [10] Smart Distribution Power Losses Estimation: A Hybrid State Estimation Approach
    Rossoni, Aquiles
    Trevizan, Rodrigo Daniel
    Bretas, Arturo Suman
    Braunstein, Sergio Halpern
    Bretas, Newton Geraldo
    [J]. 2016 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PESGM), 2016,