The Minimum Substring Cover problem

被引:11
|
作者
Hermelin, Danny [2 ]
Rawitz, Dror [1 ]
Rizzi, Romeo [3 ]
Vialette, Stephane [4 ]
机构
[1] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel
[2] Univ Haifa, Dept Comp Sci, IL-31905 Haifa, Israel
[3] Univ Udine, Dipartimento Matemat & Informat DIMI, I-33100 Udine, Italy
[4] Univ Paris 11, LRI, F-91405 Orsay, France
关键词
Approximation algorithms; Dictionary Generation; Local-ratio; Randomized rounding; Substring Cover;
D O I
10.1016/j.ic.2008.06.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we consider the problem of covering a set of strings S with a set C of substrings in S, where C is said to cover S if every string in S can be written as a concatenation of the substrings in C. We discuss applications for the problem that arise in the context of computational biology and formal language theory. We then proceed to show several hardness of approximation results for the problem, and in the main part of the paper, we focus on devising approximation algorithms using two generic paradigms-the local-ratio technique and linear programming rounding. (c) 2008 Published by Elsevier Inc.
引用
收藏
页码:1303 / 1312
页数:10
相关论文
共 50 条
  • [1] The minimum substring cover problem
    Hermelin, Danny
    Rawitz, Dror
    Rizzi, Romeo
    Vialette, Stephane
    [J]. APPROXIMATION AND ONLINE ALGORITHMS, 2008, 4927 : 170 - +
  • [2] The minimum likely column cover problem
    Crescenzi, P
    Greco, F
    [J]. INFORMATION PROCESSING LETTERS, 2004, 89 (04) : 175 - 179
  • [3] The Minimum Generalized Vertex Cover Problem
    Hassin, Refael
    Levin, Asaf
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2006, 2 (01) : 66 - 78
  • [4] The minimum generalized vertex cover problem
    Hassin, R
    Levin, A
    [J]. ALGORITHMS - ESA 2003, PROCEEDINGS, 2003, 2832 : 289 - 300
  • [5] Memory Efficient Minimum Substring Partitioning
    Li, Yang
    Kamousi, Pegah
    Han, Fangqiu
    Yang, Shengqi
    Yan, Xifeng
    Suri, Subhash
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2013, 6 (03): : 169 - 180
  • [6] Stochastic minimum weight vertex cover problem
    Ni, Yaodong
    [J]. Proceedings of the Fifth International Conference on Information and Management Sciences, 2006, 5 : 358 - 364
  • [7] The minimum-entropy set cover problem
    Halperin, E
    Karp, RM
    [J]. THEORETICAL COMPUTER SCIENCE, 2005, 348 (2-3) : 240 - 250
  • [8] The minimum-entropy set cover problem
    Halperin, E
    Karp, RM
    [J]. AUTOMATA , LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2004, 3142 : 733 - 744
  • [9] An effective algorithm for the minimum set cover problem
    Zhang, Pei
    Wang, Rong-Long
    Wu, Chong-Guang
    Okazaki, Kozo
    [J]. PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 3032 - +
  • [10] Metaheuristics for the Minimum Set Cover Problem: A Comparison
    Rosenbauer, Lukas
    Stein, Anthony
    Stegherr, Helena
    Haehner, Joerg
    [J]. PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE (IJCCI), 2020, : 123 - 130