Distributionally robust discrete LQR optimal cost

被引:0
|
作者
Winstead, V [1 ]
机构
[1] Univ Wisconsin, ECE Dept, Madison, WI 53706 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents some results on the robustness of a classical discrete Linear Quadratic Regulator (LQR) Cost Function with uncertainty in the inputs and state variables. For the typical LQR Cost Function J = E-i=0(j-1) x(i+1)(T)Qx(i+1) + u(i)(T)Ru(i) with Q and R positive definite and symmetric, we consider the expectation and variance of J given unknown independent uncertainties supported by a class of probability distribution functions f epsilon F. We find that the assumption on the uncertainty structure allows straightforward optimization of the cost function in a distributionally robust sense. We show the methodology to derive the expectation and variance of the cost and find inputs which yield robust optimizations of the cost.
引用
下载
收藏
页码:3227 / 3228
页数:2
相关论文
共 50 条
  • [1] A Distributionally Robust LQR for Systems with Multiple Uncertain Players
    Tzortzis, Ioannis
    Charalambous, Charalambos D.
    Hadjicostis, Christoforos N.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 3972 - 3977
  • [2] Data-driven distributionally robust LQR with multiplicative noise
    Coppens, Peter
    Schuurmans, Mathijs
    Patrinos, Panagiotis
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 521 - 530
  • [3] DATA-DRIVEN OPTIMAL TRANSPORT COST SELECTION FOR DISTRIBUTIONALLY ROBUST OPTIMIZATION
    Blanchet, Jose
    Kang, Yang
    Murthy, Karthyek
    Zhang, Fan
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 3740 - 3751
  • [4] Distributionally robust modeling of optimal control
    Shapiro, Alexander
    OPERATIONS RESEARCH LETTERS, 2022, 50 (05) : 561 - 567
  • [5] Distributionally robust stochastic optimal control
    Shapiro, Alexander
    Li, Yan
    Operations Research Letters, 2025, 60
  • [6] Dropout Training is Distributionally Robust Optimal
    Blanchet, Jose
    Kang, Yang
    Olea, Jose Luis Montiel
    Nguyen, Viet Anh
    Zhang, Xuhui
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [7] Discrete Approximation Scheme in Distributionally Robust Optimization
    Liu, Yongchao
    Yuan, Xiaoming
    Zhang, Jin
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (02): : 285 - 320
  • [8] Discrete Approximation and Quantification in Distributionally Robust Optimization
    Liu, Yongchao
    Pichler, Alois
    Xu, Huifu
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (01) : 19 - 37
  • [9] Distributionally Robust Linear and Discrete Optimization with Marginals
    Chen, Louis
    Ma, Will
    Natarajan, Karthik
    Simchi-Levi, David
    Yan, Zhenzhen
    OPERATIONS RESEARCH, 2022, : 1 - 13
  • [10] Distributionally Robust Linear and Discrete Optimization with Marginals
    Chen L.
    Ma W.
    Natarajan K.
    Simchi-Levi D.
    Yan Z.
    Operations Research, 2022, 70 (03) : 1822 - 1834