A partial order in the knot table

被引:22
|
作者
Kitano, T
Suzuki, M
机构
[1] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 1528552, Japan
[2] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
关键词
knot groups; surjective homomorphisms; partial order; Rolfsen's knot table; twisted Alexander invariants;
D O I
10.1080/10586458.2005.10128937
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We write K-1 >= K-2 for two prime knots K-1, K-2 if there exists a surjective group homomorphism from G(K-1) onto G(K-2) where G(K-1), G(K-2) are the knot groups of K-1, K-2, respectively. In this paper, we determine this partial order for the knots in Rolfsen's knot table.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 50 条
  • [1] A Partial Order in the Knot Table Ⅱ
    Teruaki KITANO
    Masaaki SUZUKI
    [J]. Acta Mathematica Sinica,English Series, 2008, 24 (11) : 1801 - 1816
  • [2] A Partial Order in the Knot Table II
    Kitano, Teruaki
    Suzuki, Masaaki
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (11) : 1801 - 1816
  • [3] A partial order in the knot table II
    Teruaki Kitano
    Masaaki Suzuki
    [J]. Acta Mathematica Sinica, English Series, 2008, 24 : 1801 - 1816
  • [4] A Partial Order in the Knot Table (vol 14, pg 385, 2005)
    Kitano, Teruaki
    Suzuki, Masaaki
    [J]. EXPERIMENTAL MATHEMATICS, 2011, 20 (03) : 371 - 371
  • [5] New biologically motivated knot table
    Brasher, Reuben
    Scharein, Rob G.
    Vazquez, Mariel
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2013, 41 : 606 - 611
  • [6] COMPARING PARTIAL RANK ORDER CORRELATIONS FROM CONTINGENCY TABLE DATA
    KRITZER, HM
    [J]. SOCIOLOGICAL METHODS & RESEARCH, 1980, 8 (04) : 420 - 433
  • [7] Scale the Internet routing table by generalized next hops of strict partial order
    Li, Qing
    Xu, Mingwei
    Li, Qi
    Wang, Dan
    Jiang, Yong
    Xia, Shu-Tao
    Liao, Qingmin
    [J]. INFORMATION SCIENCES, 2017, 412 : 101 - 115
  • [8] THE ALGEBRAIC CONCORDANCE ORDER OF A KNOT
    Livingston, Charles
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2010, 19 (12) : 1693 - 1711
  • [9] A NEW PARTIAL ORDER BASED ON CORE PARTIAL ORDER AND STAR PARTIAL ORDER
    Zhang, Y. A. N. G.
    Jiang, Z. O. N. G. Y. A. N. G.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (02): : 555 - 567
  • [10] Vassiliev knot invariants of order 6
    Kanenobu, T
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2001, 10 (05) : 645 - 665