A fast solver of Legendre-Laguerre spectral element method for the Camassa-Holm equation

被引:5
|
作者
Yu, Xuhong [1 ]
Ye, Xueqin [1 ]
Wang, Zhongqing [1 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Legendre-Laguerre spectral element method; The Camassa-Holm equation; Diagonalization technique; Numerical results; FINITE-DIFFERENCE SCHEME; ORTHOGONAL POLYNOMIALS; CONVERGENCE; INTEGRATION;
D O I
10.1007/s11075-020-01028-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An efficient and accurate Legendre-Laguerre spectral element method for solving the Camassa-Holm equation on the half line is proposed. The spectral element method has the flexibility for arbitrary h and p adaptivity. Two kinds of Sobolev orthogonal basis functions corresponding to each subinterval are constructed, which reduces the non-zero entries of linear systems and computational cost. Numerical experiments illustrate the effectiveness and accuracy of the suggested approach.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条