Improving MSVM-RFE for Multiclass Gene Selection

被引:0
|
作者
Zhao, Yan-Mei [2 ]
Yang, Zhi-Xia [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumuchi 830046, Peoples R China
[2] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
来源
基金
美国国家科学基金会;
关键词
ACUTE LYMPHOBLASTIC-LEUKEMIA; CYCLIN A1; EXPRESSION; CLASSIFICATION;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Along with the advent of DNA microarray technology, gene expression profiling has been widely used to study molecular signatures of many diseases and to develop molecular diagnostics for disease prediction. In class prediction problems using expression data, gene selection is essential to improve the prediction accuracy and to identify informative genes for a disease. In this paper we improve the multi-class support vector machine-recursive feature elimination (MSVM-RFE) by combining minimum redundancy maximum relevancy (mRMR) criterion and introducing the kernel. The result is the better performance with a smaller number of irredundant genes for multi-class datasets.
引用
收藏
页码:43 / +
页数:3
相关论文
共 50 条
  • [1] MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data
    Zhou, Xin
    Tuck, David P.
    BIOINFORMATICS, 2007, 23 (09) : 1106 - 1114
  • [2] MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data (vol 23, pg 1106, 2007)
    Zhou, Xin
    Tuck, David P.
    BIOINFORMATICS, 2007, 23 (15) : 2029 - 2029
  • [3] Predicting DNA-binding Proteins Using Feature Fusion and MSVM-RFE
    Ji, Guoli
    Lin, Yang
    Lin, Qiamnin
    Huang, Guangzao
    Zhu, Wenbing
    You, Wenjie
    PROCEEDINGS OF 2016 10TH IEEE INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (ASID), 2016, : 109 - 112
  • [4] Multiclass SVM-RFE for product form feature selection
    Shieh, Meng-Dar
    Yang, Chih-Chieh
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 35 (1-2) : 531 - 541
  • [5] A Novel SVM-RFE for Gene Selection
    Tan, Jun-Yan
    Yang, Zhi-Xia
    Deng, Naiyang
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2009, 11 : 237 - +
  • [6] Improving PLS-RFE based gene selection for micro-array data classification
    Wang, Aiguo
    An, Ning
    Chen, Guilin
    Li, Lian
    Alterovitz, Gil
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 62 : 14 - 24
  • [7] One-versus-one and one-versus-all multiclass SVM-RFE for gene selection in cancer classification
    Duan, Kai-Bo
    Rajapakse, Jagath C.
    Nguyen, Minh N.
    EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, PROCEEDINGS, 2007, 4447 : 47 - +
  • [8] SVM-RFE With MRMR Filter for Gene Selection
    Mundra, Piyushkumar A.
    Rajapakse, Jagath C.
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2010, 9 (01) : 31 - 37
  • [9] SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
    Huang, Mei-Ling
    Hung, Yung-Hsiang
    Lee, W. M.
    Li, R. K.
    Jiang, Bo-Ru
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [10] Multiclass classification and gene selection with a stochastic algorithm
    Le Cao, Kim-Anh
    Bonnet, Agnes
    Gadat, Sebastien
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (10) : 3601 - 3615