An ARMA Type Fuzzy Time Series Forecasting Method Based on Particle Swarm Optimization

被引:21
|
作者
Egrioglu, Erol [1 ]
Yolcu, Ufuk [2 ]
Aladag, Cagdas Hakan [3 ]
Kocak, Cem [4 ]
机构
[1] Ondokuz Mayis Univ, Dept Stat, TR-55139 Samsun, Turkey
[2] Ankara Univ, Dept Stat, TR-06100 Ankara, Turkey
[3] Hacettepe Univ, Dept Stat, TR-06100 Ankara, Turkey
[4] Hitit Univ, Med High Sch, TR-19000 Corum, Turkey
关键词
NEURAL-NETWORKS; ENROLLMENTS; INTERVALS; MODEL; LENGTH;
D O I
10.1155/2013/935815
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the literature, fuzzy time series forecasting models generally include fuzzy lagged variables. Thus, these fuzzy time series models have only autoregressive structure. Using such fuzzy time series models can cause modeling error and bad forecasting performance like in conventional time series analysis. To overcome these problems, a new first-order fuzzy time series which forecasting approach including both autoregressive and moving average structures is proposed in this study. Also, the proposed model is a time invariant model and based on particle swarm optimization heuristic. To show the applicability of the proposed approach, some methods were applied to five time series which were also forecasted using the proposed method. Then, the obtained results were compared to those obtained from other methods available in the literature. It was observed that the most accurate forecast was obtained when the proposed approach was employed.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization
    Kuo, I-Hong
    Horng, Shi-Jinn
    Kao, Tzong-Wann
    Lin, Tsung-Lieh
    Lee, Cheng-Ling
    Pan, Yi
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 6108 - 6117
  • [2] A new time invariant fuzzy time series forecasting method based on particle swarm optimization
    Aladag, Cagdas Hakan
    Yolcu, Ufuk
    Egrioglu, Erol
    Dalar, Ali Z.
    APPLIED SOFT COMPUTING, 2012, 12 (10) : 3291 - 3299
  • [3] Forecasting TAIFEX based on fuzzy time series and particle swarm optimization
    Kuo, I-Hong
    Horng, Shi-Jinn
    Chen, Yuan-Hsin
    Run, Ray-Shine
    Kao, Tzong-Wann
    Chen, Rong-Jian
    Lai, Jui-Lin
    Lin, Tsung-Lieh
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (02) : 1494 - 1502
  • [4] Particle swarm optimization and intuitionistic fuzzy set-based novel method for fuzzy time series forecasting
    Pant, Manish
    Kumar, Sanjay
    GRANULAR COMPUTING, 2022, 7 (02) : 285 - 303
  • [5] Particle swarm optimization and intuitionistic fuzzy set-based novel method for fuzzy time series forecasting
    Manish Pant
    Sanjay Kumar
    Granular Computing, 2022, 7 : 285 - 303
  • [6] Fuzzy time series forecasting based on proportions of intervals and particle swarm optimization techniques
    Chen, Shyi-Ming
    Zou, Xin-Yao
    Gunawan, Gracius Cagar
    INFORMATION SCIENCES, 2019, 500 : 127 - 139
  • [7] Adaptive hybrid fuzzy time series forecasting technique based on particle swarm optimization
    Gunjan Goyal
    Dinesh C. S. Bisht
    Granular Computing, 2023, 8 : 373 - 390
  • [8] Adaptive hybrid fuzzy time series forecasting technique based on particle swarm optimization
    Goyal, Gunjan
    Bisht, Dinesh C. S.
    GRANULAR COMPUTING, 2023, 8 (02) : 373 - 390
  • [9] A hybrid forecasting model for enrollments based on aggregated fuzzy time series and particle swarm optimization
    Huang, Yao-Lin
    Horng, Shi-Jinn
    He, Mingxing
    Fan, Pingzhi
    Kao, Tzong-Wann
    Khan, Muhammad Khurram
    Lai, Jui-Lin
    Kuo, I-Hong
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (07) : 8014 - 8023
  • [10] Picture Fuzzy Time Series Forecasting with a Novel Variant of Particle Swarm Optimization
    Rath S.
    Dutta D.
    SN Computer Science, 5 (1)