Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states

被引:23
|
作者
Li, Xiangrong [1 ]
Li, Dafa [2 ,3 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] TNList, Ctr Quantum Informat Sci & Technol, Beijing 100084, Peoples R China
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 04期
基金
中国国家自然科学基金;
关键词
SLOCC CLASSIFICATION;
D O I
10.1103/PhysRevA.86.042332
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We construct coefficient matrices of size 2(l) by 2(n-l) associated with pure n-qubit states and prove the invariance of the ranks of the coefficient matrices under stochastic local operations and classical communication (SLOCC). The ranks give rise to a simple way of partitioning pure n-qubit states into inequivalent families and distinguishing degenerate families from one another under SLOCC. Moreover, the classification scheme via the ranks of coefficient matrices can be combined with other schemes to build a more refined classification scheme. To exemplify we classify the nine families of four qubits introduced by Verstraete et al. [Phys. Rev. A 65, 052112 (2002)] further into inequivalent subfamilies via the ranks of coefficient matrices, and as a result, we find 28 genuinely entangled families and all the degenerate classes can be distinguished up to permutations of the four qubits. We also discuss the completeness of the classification of four qubits into nine families.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Entanglement of four-qubit rank-2 mixed states
    Eylee Jung
    DaeKil Park
    Quantum Information Processing, 2015, 14 : 3317 - 3333
  • [2] Entanglement of four-qubit rank-2 mixed states
    Jung, Eylee
    Park, DaeKil
    QUANTUM INFORMATION PROCESSING, 2015, 14 (09) : 3317 - 3333
  • [3] Four-qubit pure states as fermionic states
    Chen, Lin
    Dokovic, Dragomir Z.
    Grassl, Markus
    Zeng, Bei
    PHYSICAL REVIEW A, 2013, 88 (05):
  • [4] Characterization of four-qubit states via Bell inequalities
    ZHAO Hui
    ZHANG XingHua
    FEI ShaoMing
    WANG ZhiXi
    Chinese Science Bulletin, 2013, 58 (19) : 2334 - 2339
  • [5] Characterization of four-qubit states via Bell inequalities
    Zhao Hui
    Zhang XingHua
    Fei ShaoMing
    Wang ZhiXi
    CHINESE SCIENCE BULLETIN, 2013, 58 (19): : 2334 - 2339
  • [6] Remote preparation of four-qubit states via two-qubit maximally entangled states
    Xue, Yang
    Shi, Lei
    Da, Xinyu
    Zhou, Kaihang
    Ma, Lihua
    Wei, Jiahua
    Yu, Longqiang
    Hu, Hang
    QUANTUM INFORMATION PROCESSING, 2019, 18 (04)
  • [7] Remote preparation of four-qubit states via two-qubit maximally entangled states
    Yang Xue
    Lei Shi
    Xinyu Da
    Kaihang Zhou
    Lihua Ma
    Jiahua Wei
    Longqiang Yu
    Hang Hu
    Quantum Information Processing, 2019, 18
  • [8] Classification of four-qubit entangled states via machine learning
    Vintskevich, S. V.
    Bao, N.
    Nomerotski, A.
    Stankus, P.
    Grigoriev, D. A.
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [9] Quantum nonlocality of four-qubit entangled states
    Wu, Chunfeng
    Yeo, Ye
    Kwek, L. C.
    Oh, C. H.
    PHYSICAL REVIEW A, 2007, 75 (03):
  • [10] Multipartite entanglement in four-qubit graph states
    Jafarpour, Mojtaba
    Assadi, Leila
    EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (03):