Analytical approach to the time-dependent probability density function in tilted periodic potentials

被引:5
|
作者
Salgado-Garcia, R. [1 ,2 ]
Leyvraz, F. [2 ]
Martinez-Mekler, G. [2 ]
机构
[1] Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 06期
关键词
Brownian motion; diffusion; Fokker-Planck equation; probability;
D O I
10.1103/PhysRevE.78.061101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work we introduce a scheme for the calculation of an approximate closed expression for the time-dependent probability density function for overdamped particles in tilted periodic potentials. Our derivation is based on an ansatz for the solution of the corresponding Fokker-Planck equation and on a self-consistent cumulant calculation. The high accuracy of our expression for the time-dependent probability density function is exhibited by comparisons with Langevin dynamics simulations and exact analytic results for the drift and diffusion coefficients. Good agreement is found both, for large and intermediate times.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Time-dependent probability density function for partial resetting dynamics
    Di Bello, Costantino
    Chechkin, Aleksei, V
    Hartmann, Alexander K.
    Palmowski, Zbigniew
    Metzler, Ralf
    [J]. NEW JOURNAL OF PHYSICS, 2023, 25 (08):
  • [2] Time-dependent probability density function in cubic stochastic processes
    Kim, Eun-jin
    Hollerbach, Rainer
    [J]. PHYSICAL REVIEW E, 2016, 94 (05)
  • [3] Polymer dynamics in time-dependent periodic potentials
    Kauttonen, Janne
    Merikoski, Juha
    Pulkkinen, Otto
    [J]. PHYSICAL REVIEW E, 2008, 77 (06):
  • [4] FORMULATION OF COLLISION PROBABILITY WITH TIME-DEPENDENT PROBABILITY DENSITY FUNCTIONS
    Chan, Ken
    [J]. SPACEFLIGHT MECHANICS 2015, PTS I-III, 2015, 155 : 23 - 42
  • [5] Time-dependent probability density function analysis of H-mode transitions
    Farre-Kaga, Hiro J.
    Andrew, Yasmin
    Dunsmore, Jamie
    Kim, Eun-Jin
    Rhodes, Terry L.
    Schmitz, Lothar
    Yan, Zheng
    [J]. EPL, 2023, 142 (06)
  • [6] An Algebraic Approach for Solving Time-Dependent Potentials
    Huber, Alfred
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2011, 66 (01) : 205 - 217
  • [7] TIME-DEPENDENT PROBABILITY DENSITY OF STATISTICAL-MECHANICS
    CARBONELL, RG
    KOSTIN, MD
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1974, 11 (05) : 379 - 390
  • [8] Time-dependent resonant scattering: An analytical approach
    Lecomte, J. M.
    Kirrander, Adam
    Jungen, Ch.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (16):
  • [9] On the time-dependent Fisher information of a density function
    Kharazmi, Omid
    Asadi, Majid
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2018, 32 (04) : 795 - 814
  • [10] TIME-DEPENDENT INTEGRAL-EQUATION APPROACH TO QUANTUM DYNAMICS OF SYSTEMS WITH TIME-DEPENDENT POTENTIALS
    KOURI, DJ
    HOFFMAN, DK
    [J]. CHEMICAL PHYSICS LETTERS, 1991, 186 (01) : 91 - 99