Superlinear Subset Partition Graphs With Dimension Reduction, Strong Adjacency, and Endpoint Count

被引:0
|
作者
Bogart, Tristram C. [1 ]
Kim, Edward D. [2 ]
机构
[1] Univ Andes, Dept Matemat, Carrera Primera 18A-12, Bogota, DC, Colombia
[2] Univ Wisconsin La Crosse, Dept Math, 1725 State St, La Crosse, WI 54601 USA
关键词
D-STEP CONJECTURE; COMBINATORIAL DIAMETER; RECENT PROGRESS; POLYTOPES; POLYHEDRA;
D O I
10.1007/s00493-016-3327-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a sequence of subset partition graphs satisfying the dimension reduction, adjacency, strong adjacency, and endpoint count properties whose diameter has a superlinear asymptotic lower bound. These abstractions of polytope graphs give further evidence against the Linear Hirsch Conjecture.
引用
收藏
页码:75 / 114
页数:40
相关论文
共 4 条
  • [1] Superlinear Subset Partition Graphs With Dimension Reduction, Strong Adjacency, and Endpoint Count
    Tristram C. Bogart
    Edward D. Kim
    Combinatorica, 2018, 38 : 75 - 114
  • [2] On the strong partition dimension of graphs
    Gonzalez Yero, Ismael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (03):
  • [3] The partition dimension of strong product graphs and Cartesian product graphs
    Gonzalez Yero, Ismael
    Jakovac, Marko
    Kuziak, Dorota
    Taranenko, Andrej
    DISCRETE MATHEMATICS, 2014, 331 : 43 - 52
  • [4] On the (adjacency) metric dimension of corona and strong product graphs and their local variants: Combinatorial and computational results
    Fernau, Henning
    Rodriguez-Velazquez, Juan A.
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 183 - 202