Feature dimension reduction using reduced-rank maximum likelihood estimation for hidden Markov models

被引:0
|
作者
Sun, DX
机构
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents a new method of feature dimension reduction in hidden Markov modeling (HMM) for speech recognition. The key idea is to apply reduced rank maximum likelihood estimation in the M-step of the usual Baum-Welch algorithm for estimating HMM parameters such that the estimates of the Gaussian distribution parameters are restricted in a sub-space of reduced dimensionality. There are two main advantages of applying this method in HMM: 1) feature dimension reduction is achieved simultaneously with the estimation of HMM parameters, therefore it guarantees that the likelihood function is monotonically increasing; 2) it requires very little extra computation in addition to the standard Baum-Welch algorithm, hence it can be easily incorporated in the existing speech recognition systems using HMMs.
引用
收藏
页码:244 / 247
页数:4
相关论文
共 50 条
  • [1] Maximum likelihood parameter and rank estimation in reduced-rank multivariate linear regressions
    Stoica, P
    Viberg, M
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (12) : 3069 - 3078
  • [2] The maximum likelihood estimate in reduced-rank regression
    Eldén, L
    Savas, B
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (08) : 731 - 741
  • [3] MAXIMUM-LIKELIHOOD-ESTIMATION FOR HIDDEN MARKOV-MODELS
    LEROUX, BG
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 40 (01) : 127 - 143
  • [4] Maximum likelihood estimation for hidden semi-Markov models
    Barbu, V
    Limnios, N
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (03) : 201 - 205
  • [5] Nonparametric identification and maximum likelihood estimation for hidden Markov models
    Alexandrovich, G.
    Holzmann, H.
    Leister, A.
    [J]. BIOMETRIKA, 2016, 103 (02) : 423 - 434
  • [6] Penalized maximum likelihood estimation for Gaussian hidden Markov models
    Alexandrovich, Grigory
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (20) : 6133 - 6148
  • [7] MAXIMUM LIKELIHOOD ESTIMATION IN HIDDEN MARKOV MODELS WITH INHOMOGENEOUS NOISE
    Diehn, Manuel
    Munk, Axel
    Rudolf, Daniel
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2019, 23 (492-523) : 492 - 523
  • [8] Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models
    Bura, E.
    Duarte, S.
    Forzani, L.
    Smucler, E.
    Sued, M.
    [J]. STATISTICS, 2018, 52 (05) : 1005 - 1024
  • [9] Maximum likelihood estimation in discrete mixed hidden Markov models using the SAEM algorithm
    Delattre, M.
    Lavielle, M.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 2073 - 2085
  • [10] Recursive maximum likelihood estimation for hidden semi-Markov models
    Squire, K
    Levinson, SE
    [J]. 2005 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2005, : 329 - 334