Components Interaction of Cotton Stalk under Low-Temperature Hydrothermal Conversion: A Bio-Oil Pyrolysis Behavior Perspective Analysis

被引:5
|
作者
Yang, Xiao [1 ]
Chen, Naihao [1 ]
Ge, Shengbo [2 ]
Sheng, Yequan [2 ]
Yang, Kun [1 ]
Lin, Pengmusen [1 ]
Guo, Xuqiang [1 ]
Lam, Su Shiung [2 ,3 ]
Ming, Hui [1 ]
Zhang, Libo [1 ]
机构
[1] China Univ Petr Beijing Karamay, Coll Engn, State Key Lab Heavy Oil Proc, Karamay 834000, Peoples R China
[2] Nanjing Forestry Univ, Coll Mat Sci & Engn, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat F, Int Innovat Ctr Forest Chem & Mat, Nanjing 210037, Peoples R China
[3] Univ Malaysia Terengganu, Higher Inst Ctr Excellence HICoE, Inst Trop Aquaculture & Fisheries AKUATROP, Kuala Nerus 21030, Malaysia
基金
美国国家科学基金会;
关键词
bio-oil; cotton stalk; hydro-thermal liquefaction; interaction; multi-variate blending; CELLULOSE-LIGNIN INTERACTIONS; LIGNOCELLULOSIC BIOMASS; LIQUEFACTION; HEMICELLULOSE; GASIFICATION; CONSTITUENTS; PROTEIN; XYLAN;
D O I
10.3390/polym14204307
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The conversion of agricultural and forestry waste biomass materials into bio-oil by mild hydro-thermal technology has a positive effect on extending the agricultural industry chain and alleviating the world energy crisis. The interaction investigation of biomass components during bio-oil formation can be significant for the efficient conversion of lignocellulose when different raw materials are fed together. In this paper, a bio-oil pyrolysis behavior (thermogravimetric analysis, TG) perspective component interaction investigation of cotton stalks under low-temperature hydro-thermal conversion (220 degrees C) was studied. Cellulose, hemi-cellulose, lignin, and protein were used as lignocellulose model components, by their simple binary blending and multi-variate blending and combined with thermo-gravimetric analysis and gas chromatography-mass spectrometry (GC-MS) characterization and analysis. The interaction of different model components and real biomass raw material components in the hydro-thermal process was explored. Results showed that the components of hydro-thermal bio-oil from cotton stalks were highly correlated with the interactions between cellulose, hemi-cellulose, lignin, and protein. During the hydro-thermal process, cellulose and hemi-cellulose inhibit each other, which reduces the content of ketones, aldehydes, ethers, and alcohols in bio-oil. Interaction between cellulose and lignin was obvious, which promotes the formation of oligomers, such as ketones, aldehydes, esters, phenols, and aliphatic, while inhibiting the production of aromatic and multi-hybrid compounds. Otherwise, there was no obvious interaction effect between hemi-cellulose and lignin or between lignin and protein. This research will guide the industrialization of lignocellulose, especially the possible co-feed hydro-thermal conversion technology.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Life cycle assessment of bio-oil prepared from low-temperature hydrothermal oxide-catalyzed cotton stalk
    Lin, Pengmusen
    Yu, Xinyu
    Wang, Han
    Ming, Hui
    Ge, Shengbo
    Liu, Fang
    Peng, Haowei
    Sonne, Christian
    Zhang, Libo
    ENERGY, 2023, 282
  • [2] Biomass to bio-oil via fast pyrolysis of cotton straw and stalk
    Pütün, AE
    ENERGY SOURCES, 2002, 24 (03): : 275 - 285
  • [3] Influence of typical pretreatment on cotton stalk conversion activity and bio-oil property during low temperature (180-220?) hydrothermal process
    Zhang, Libo
    Yang, Xiao
    Sheng, Yequan
    Huang, Qiguang
    Yang, Zhilin
    Shi, Yang
    Guo, Xuqiang
    Ge, Shengbo
    FUEL, 2022, 328
  • [4] Conversion of bio-oil to bio gasoline via pyrolysis and hydrothermal: A review
    Shamsul, N. S.
    Kamarudin, S. K.
    Rahman, N. A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 80 : 538 - 549
  • [5] Bio-Oil Production from Fast Pyrolysis of Cotton Stalk in Fluidized Bed Reactor
    Najaf Ali
    Mahmood Saleem
    Khurram Shahzad
    Arshad Chughtai
    Arabian Journal for Science and Engineering, 2015, 40 : 3019 - 3027
  • [6] Bio-Oil Production from Fast Pyrolysis of Cotton Stalk in Fluidized Bed Reactor
    Ali, Najaf
    Saleem, Mahmood
    Shahzad, Khurram
    Chughtai, Arshad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2015, 40 (11) : 3019 - 3027
  • [7] Characteristics of bio-oil and biochar from cotton stalk pyrolysis: Effects of torrefaction temperature and duration in an ammonia environment
    Zhao, An
    Liu, Shanjian
    Yao, Jingang
    Huang, Fupeng
    He, Zhisen
    Liu, Jia
    BIORESOURCE TECHNOLOGY, 2022, 343
  • [8] Fast pyrolysis of sesame stalk:: yields and structural analysis of bio-oil
    Ates, F
    Pütün, E
    Pütün, AE
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2004, 71 (02) : 779 - 790
  • [9] Effect of reaction temperature on the conversion of algal biomass to bio-oil and biochar through pyrolysis and hydrothermal liquefaction
    Brindhadevi, Kathirvel
    Anto, Susaimanickam
    Rene, Eldon R.
    Sekar, Manigandan
    Mathimani, Thangavel
    Thuy Lan Chi, Nguyen
    Pugazhendhi, Arivalagan
    Fuel, 2021, 285
  • [10] Effect of reaction temperature on the conversion of algal biomass to bio-oil and biochar through pyrolysis and hydrothermal liquefaction
    Brindhadevi, Kathirvel
    Anto, Susaimanickam
    Rene, Eldon R.
    Sekar, Manigandan
    Mathimani, Thangavel
    Nguyen Thuy Lan Chi
    Pugazhendhi, Arivalagan
    FUEL, 2021, 285