Variational principle and almost quasilocality for renormalized measures

被引:8
|
作者
Fernández, R [1 ]
Le Ny, A
Redig, F
机构
[1] Univ Rouen, Lab Math Raphael Salem, F-76821 Mont St Aignan, France
[2] CNRS, Fac Sci, F-76821 Mont St Aignan, France
[3] Tech Univ Eindhoven, Eurandom, NL-5600 MB Eindhoven, Netherlands
[4] Tech Univ Eindhoven, Fac Wiskunde Informat, NL-5600 MB Eindhoven, Netherlands
关键词
renormalization group; almost quasilocality; variational principle;
D O I
10.1023/A:1022281730113
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the variational principle for some non-Gibbsian measures. We give a necessary and sufficient condition for the validity of the implication zero relative entropy density implies common version of conditional probabilities (so-called second part of the variational principle). Applying this to noisy decimations of the low-temperature phases of the Ising model, we obtain almost sure quasilocality for these measures and the second part of the variational principle. For the projection of low temperature Ising phases on a one-dimensional layer, we also obtain the second part of the variational principle.
引用
收藏
页码:465 / 478
页数:14
相关论文
共 50 条
  • [1] Variational Principle and Almost Quasilocality for Renormalized Measures
    Roberto Fernández
    Arnaud Le Ny
    Frank Redig
    [J]. Journal of Statistical Physics, 2003, 111 : 465 - 478
  • [2] Variational Principle for Some Renormalized Measures
    R. Lefevere
    [J]. Journal of Statistical Physics, 1999, 96 : 109 - 133
  • [3] Variational principle for some renormalized measures
    Lefevere, R
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1999, 96 (1-2) : 109 - 133
  • [4] An almost sure invariance principle for renormalized intersection local times
    Bass, RF
    Rosen, J
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2005, 10 : 124 - 164
  • [5] ALMOST SURE QUASILOCALITY IN THE RANDOM CLUSTER MODEL
    PFISTER, CE
    VELDE, KV
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (3-4) : 765 - 774
  • [6] VARIATIONAL PRINCIPLE FOR FUZZY GIBBS MEASURES
    Verbitskiy, Evgeny
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2010, 10 (04) : 811 - 829
  • [7] ALMOST METRIC VERSIONS OF ZHONG'S VARIATIONAL PRINCIPLE
    Turinici, Mihai
    [J]. MATEMATICKI VESNIK, 2013, 65 (04): : 519 - 532
  • [8] Almost-complex and almost-product Einstein manifolds from a variational principle
    Borowiec, A
    Ferraris, M
    Francaviglia, M
    Volovich, I
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (07) : 3446 - 3464
  • [9] Almost BPS but still not renormalized
    Bena, Iosif
    Puhm, Andrea
    Vasilakis, Orestis
    Warner, Nicholas P.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09):
  • [10] Almost BPS but still not renormalized
    Iosif Bena
    Andrea Puhm
    Orestis Vasilakis
    Nicholas P. Warner
    [J]. Journal of High Energy Physics, 2013