Prediction of gas chromatographic retention indices by the use of radial basis function neural networks

被引:34
|
作者
Yao, XJ
Zhang, XY
Zhang, RS
Liu, MC
Hu, ZD [1 ]
Fan, BT
机构
[1] Lanzhou Univ, Dept Chem, Lanzhou 730000, Peoples R China
[2] Univ Paris 07, ITODYS, F-75005 Paris, France
关键词
neural network; radial basis function; quantitative structure-retention relationship; boiling point; molar volume;
D O I
10.1016/S0039-9140(02)00031-0
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A new method for the prediction of retention indices for a diverse set of compounds from their physicochemical parameters has been proposed. The two used input parameters for representing molecular properties are boiling point and molar volume. Models relating relationships between physicochemical parameters and retention indices of compounds are constructed by means of radial basis function neural networks. To get the best prediction results, some strategies are also employed to optimize the topology and learning parameters of the RBFNNs. For the test set, a predictive correlation coefficient R = 0.9910 and root mean squared error of 14.1 are obtained. Results show that radial basis function networks can give satisfactory prediction ability and its optimization is less-time consuming and easy to implement. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 50 条
  • [1] Prediction of enthalpy of alkanes by the use of radial basis function neural networks
    Yao, XJ
    Zhang, XY
    Zhang, RS
    Liu, MC
    Hu, ZD
    Fan, BT
    [J]. COMPUTERS & CHEMISTRY, 2001, 25 (05): : 475 - 482
  • [2] Modelling of gas chromatographic retention indices using counterpropagation neural networks
    Pompe, M
    Razinger, M
    Novic, M
    Veber, M
    [J]. ANALYTICA CHIMICA ACTA, 1997, 348 (1-3) : 215 - 221
  • [3] Prediction of gas chromatographic retention indices of alkylbenzenes
    Sutter, JM
    Peterson, TA
    Jurs, PC
    [J]. ANALYTICA CHIMICA ACTA, 1997, 342 (2-3) : 113 - 122
  • [4] Prediction of gas chromatographic retention indices of coumarins
    Soares, MD
    Delle Monache, F
    Heinzen, VEF
    Yunes, RA
    [J]. JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 1999, 10 (03) : 189 - 196
  • [5] Stock Indices Prediction Using Radial Basis Function Neural Network
    Rout, Minakhi
    Majhi, Babita
    Mohapatra, Usha Manasi
    Mahapatra, Rosalin
    [J]. SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, (SEMCCO 2012), 2012, 7677 : 285 - +
  • [6] Application of wavelet neural network to the prediction of gas chromatographic retention indices of alkanes
    Yin, CS
    Guo, WM
    Lin, T
    Liu, SS
    Fu, RQ
    Pan, ZX
    Wang, LS
    [J]. JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2001, 48 (04) : 739 - 749
  • [7] PREDICTION OF GAS-CHROMATOGRAPHIC RETENTION INDEX DATA BY NEURAL NETWORKS
    BRUCHMANN, A
    ZINN, P
    HAFFER, CM
    [J]. ANALYTICA CHIMICA ACTA, 1993, 283 (02) : 869 - 880
  • [8] Prediction of retention times of peptides in RPLC by using radial basis function neural networks and projection pursuit regression
    Du, Hongying
    Wang, He
    Zhang, Xiaoyun
    Yao, Xiaojun
    Hu, Zhide
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2008, 92 (01) : 92 - 99
  • [9] Vessel Trajectory Prediction Using Radial Basis Function Neural Networks
    Stogiannos, Marios
    Papadimitrakis, Myron
    Sarimveis, Haralambos
    Alexandridis, Alex
    [J]. IEEE EUROCON 2021 - 19TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES, 2021, : 113 - 118
  • [10] Accurate prediction of isothermal gas chromatographic Kovats retention indices
    Anjum, Afia
    Liigand, Jaanus
    Milford, Ralph
    Gautam, Vasuk
    Wishart, David S.
    [J]. JOURNAL OF CHROMATOGRAPHY A, 2023, 1705