Research of Building Information Extraction and Evaluation based on High-resolution Remote-Sensing Imagery

被引:1
|
作者
Cao, Qiong [1 ]
Gu, Lingjia [1 ]
Ren, Ruizhi [1 ]
Wang, Lang [2 ]
机构
[1] Jilin Univ Changchun, Coll Elect Sci & Engn, Changchun 130012, Jilin, Peoples R China
[2] Zhejiang Univ, Ningbo Inst Technol, Ningbo 315100, Zhejiang, Peoples R China
来源
IMAGING SPECTROMETRY XXI | 2016年 / 9976卷
关键词
high-resolution; GF-1; satellite; morphological building index; building detection; spectral features; INDEX;
D O I
10.1117/12.2235376
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Building extraction currently is important in the application of high-resolution remote sensing imagery. At present, quite a few algorithms are available for detecting building information, however, most of them still have some obvious disadvantages, such as the ignorance of spectral information, the contradiction between extraction rate and extraction accuracy. The purpose of this research is to develop an effective method to detect building information for Chinese GF-1 data. Firstly, the image preprocessing technique is used to normalize the image and image enhancement is used to highlight the useful information in the image. Secondly, multi-spectral information is analyzed. Subsequently, an improved morphological building index (IMBI) based on remote sensing imagery is proposed to get the candidate building objects. Furthermore, in order to refine building objects and further remove false objects, the post-processing (e.g., the shape features, the vegetation index and the water index) is employed. To validate the effectiveness of the proposed algorithm, the omission errors (OE), commission errors (CE), the overall accuracy (OA) and Kappa are used at final. The proposed method can not only effectively use spectral information and other basic features, but also avoid extracting excessive interference details from high-resolution remote sensing images. Compared to the original MBI algorithm, the proposed method reduces the OE by 33.14%. At the same time, the Kappa increase by 16.09%. In experiments, IMBI achieved satisfactory results and outperformed other algorithms in terms of both accuracies and visual inspection.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Building Extraction from High-Resolution Remote-Sensing Images Based on Deep Learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    ELEKTROTEHNISKI VESTNIK, 2020, 87 (05): : 281 - 286
  • [2] Building extraction from high-resolution remote-sensing images based on deep learning
    You, Haihui
    Li, Linhui
    Jing, Weipeng
    Elektrotehniski Vestnik/Electrotechnical Review, 2020, 87 (05): : 281 - 286
  • [3] Research on Building Target Detection Based on High-Resolution Optical Remote Sensing Imagery
    Mei, Yong
    Chen, Hao
    Yang, Shuting
    ALGORITHMS, 2021, 14 (10)
  • [4] Object-oriented method of hierarchical urban building extraction from high-resolution remote-sensing imagery
    Tao, Chao
    Tan, Yihua
    Cai, Huajie
    Du, Bo
    Tian, Jinwen
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2010, 39 (01): : 39 - 45
  • [5] Semisupervised Building Instance Extraction From High-Resolution Remote Sensing Imagery
    Fang, Fang
    Xu, Rui
    Li, Shengwen
    Hao, Qingyi
    Zheng, Kang
    Wu, Kaishun
    Wan, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] Building Extraction From Remote Sensing Imagery With a High-Resolution Capsule Network
    Yu, Yongtao
    Liu, Chao
    Gao, Junyong
    Jin, Shenghua
    Jiang, Xiaoling
    Jiang, Mingxin
    Zhang, Haiyan
    Zhang, Yahong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Advances in urban information extraction from high-resolution remote sensing imagery
    Jianya Gong
    Chun Liu
    Xin Huang
    Science China Earth Sciences, 2020, 63 : 463 - 475
  • [8] Advances in urban information extraction from high-resolution remote sensing imagery
    Jianya GONG
    Chun LIU
    Xin HUANG
    ScienceChina(EarthSciences), 2020, 63 (04) : 463 - 475
  • [9] Advances in urban information extraction from high-resolution remote sensing imagery
    Gong, Jianya
    Liu, Chun
    Huang, Xin
    SCIENCE CHINA-EARTH SCIENCES, 2020, 63 (04) : 463 - 475
  • [10] A New Building Extraction Postprocessing Framework for High-Spatial-Resolution Remote-Sensing Imagery
    Huang, Xin
    Yuan, Wenliang
    Li, Jiayi
    Zhang, Liangpei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (02) : 654 - 668