ESTIMATES OF EIGENVALUES OF A CLAMPED PROBLEM

被引:0
|
作者
Zheng, Tao [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国博士后科学基金;
关键词
biharmonic operator; eigenvalue; Hermitian metric; complex projective space; hyperbolic space; RIEMANNIAN-MANIFOLDS; PLATE PROBLEM; UNIVERSAL INEQUALITIES; BIHARMONIC OPERATOR; BOUNDS; LAPLACIAN; DOMAINS;
D O I
10.2996/kmj/1436403889
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, for the eigenvalue problem of a clamped plate problem on complex projective space with holomorphic sectional curvature c(> 0) and n(>= 3)-dimensional noncompact simply connected complete Riemannian manifold with sectional curvature Sec satisfying -a(2) <= Sec <= -b(2), where a >= b >= 0 are constants, we obtain universal eigenvalue inequalities. Moreover, we deduce the estimates of the upper bounds of eigenvalues.
引用
收藏
页码:249 / 269
页数:21
相关论文
共 50 条