Cramer-rao bounds for antenna array design

被引:71
|
作者
Gazzah, H [1 ]
Marcos, S
机构
[1] Univ Edinburgh, Inst Digital Commun, Sch Engn & Elect, Edinburgh EH9 3JL, Midlothian, Scotland
[2] CNRS, LSS Supelec, F-91192 Gif Sur Yvette, France
关键词
antenna arrays; direction-of-arrival (DOA) estimation;
D O I
10.1109/TSP.2005.861091
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the impact of the geometry of the (planar) antenna array on the accuracy of the estimated direction(s) of arrivals of an emitting source. We develop explicit Cramer-Rao bounds (CRBs) of the azimuth and elevation angles that show a simple structure. In particular, for a fixed elevation angle, the CRBs are cosine functions of the source azimuth, and so, regardless of the array geometry. The amplitude and extremes of these functions depend on the array geometry. Hence, the array configuration can be chosen in order to ensure a desired (an)isotropic behavior. To do so, we propose a pragmatic methodology that also takes into account the array ambiguity problem. The array design problem is simplified by limiting the array search within a family of V-shaped arrays that are advantageously characterized by a single parameter, the angle between the two branches. A performance measure is proposed, then analytically expressed, to assess the array directivity and gain with respect to the more standardly used uniform circular array.
引用
收藏
页码:336 / 345
页数:10
相关论文
共 50 条
  • [1] Cramer-Rao Lower Bounds for UWB Localization with Antenna Array
    Zhang, Qi
    Cao, Wei
    Nallanathan, A.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2010,
  • [2] Cramer-Rao bound analysis for active array with antenna switching
    Lee, MS
    Katkovnik, V
    Kim, YH
    [J]. ELECTRONICS LETTERS, 2003, 39 (01) : 7 - 8
  • [3] CRAMER-RAO BOUNDS FOR BISTATIC RADARS
    Greco, Maria
    Gini, Fulvio
    Farina, Alfonso
    [J]. 2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2009, : 157 - 160
  • [4] Cramer-Rao Bounds for Holographic Positioning
    D'Amico, Antonio A. A.
    Torres, Andrea de Jesus
    Sanguinetti, Luca
    Win, Moe
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 5518 - 5532
  • [5] Cramer-Rao bounds for synchronization of rotations
    Boumal, Nicolas
    Singer, Amit
    Absil, P. -A.
    Blondel, Vincent D.
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2014, 3 (01) : 1 - 39
  • [6] Computing Constrained Cramer-Rao Bounds
    Tune, Paul
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) : 5543 - 5548
  • [7] CRAMER-RAO BOUNDS ON MENSURATION ERRORS
    GONSALVES, RA
    [J]. APPLIED OPTICS, 1976, 15 (05): : 1270 - 1275
  • [8] Computing Bayesian Cramer-Rao bounds
    Dauwels, J
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 425 - 429
  • [9] CRAMER-RAO BOUNDS FOR POSTERIOR VARIANCES
    GHOSH, M
    [J]. STATISTICS & PROBABILITY LETTERS, 1993, 17 (03) : 173 - 178
  • [10] Cramer-Rao bounds for metasurface susceptibilities
    Lepetit, Thomas
    Kodigala, Ashok
    Kante, Boubacar
    [J]. METAMATERIALS, METADEVICES, AND METASYSTEMS 2015, 2015, 9544