Distributionally Robust Bayesian Optimization

被引:0
|
作者
Kirschner, Johannes [1 ]
Bogunovic, Ilija [1 ]
Jegelka, Stefanie [2 ]
Krause, Andreas [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] MIT, Cambridge, MA 02139 USA
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robustness to distributional shift is one of the key challenges of contemporary machine learning. Attaining such robustness is the goal of distributionally robust optimization, which seeks a solution to an optimization problem that is worst-case robust under a specified distributional shift of an uncontrolled covariate. In this paper, we study such a problem when the distributional shift is measured via the maximum mean discrepancy (MMD). For the setting of zeroth-order, noisy optimization, we present a novel distributionally robust Bayesian optimization algorithm (DRBO). Our algorithm provably obtains sub-linear robust regret in various settings that differ in how the uncertain covariate is observed. We demonstrate the robust performance of our method on both synthetic and real-world benchmarks.
引用
收藏
页码:1921 / 1930
页数:10
相关论文
共 50 条
  • [1] BAYESIAN DISTRIBUTIONALLY ROBUST OPTIMIZATION
    Shapiro, Alexander
    Zhou, Enlu
    Lin, Yifan
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (02) : 1279 - 1304
  • [2] Distributionally Robust Bayesian Quadrature Optimization
    Thanh Tang Nguyen
    Gupta, Sunil
    Ha, Huong
    Rana, Santu
    Venkatesh, Svetha
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1921 - 1930
  • [3] Distributionally Robust Bayesian Optimization with φ-divergences
    Husain, Hisham
    Vu Nguyen
    van den Hengel, Anton
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [4] Bayesian Optimization for Distributionally Robust Chance-constrained Problem
    Inatsu, Yu
    Takeno, Shion
    Karasuyama, Masayuki
    Takeuchi, Ichiro
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [5] Near-Optimal Bayesian Ambiguity Sets for Distributionally Robust Optimization
    Gupta, Vishal
    MANAGEMENT SCIENCE, 2019, 65 (09) : 4242 - 4260
  • [6] Data-Driven Bayesian Nonparametric Wasserstein Distributionally Robust Optimization
    Ning, Chao
    Ma, Xutao
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3597 - 3602
  • [7] Efficient Distributionally Robust Bayesian Optimization with Worst-case Sensitivity
    Tay, Sebastian Shenghong
    Foo, Chuan Sheng
    Urano, Daisuke
    Leong, Richalynn Chiu Xian
    Low, Bryan Kian Hsiang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [8] Adaptive Distributionally Robust Optimization
    Bertsimas, Dimitris
    Sim, Melvyn
    Zhang, Meilin
    MANAGEMENT SCIENCE, 2019, 65 (02) : 604 - 618
  • [9] Distributionally Robust Portfolio Optimization
    Bardakci, I. E.
    Lagoa, C. M.
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 1526 - 1531
  • [10] Distributionally ambiguous optimization for batch bayesian optimization
    Rontsis, Nikitas
    Osborne, Michael A.
    Goulart, Paul J.
    Journal of Machine Learning Research, 2020, 21