Analysis of Zero-Inflated Count Data From Clinical Trials With Potential Dropouts

被引:5
|
作者
Yang, Jingyuan [1 ]
Li, Xiaoming [2 ]
Liu, Guanghan F. [3 ]
机构
[1] Amgen Inc, Global Biostat Sci, Thousand Oaks, CA 91320 USA
[2] Gilead Sci Inc, Biostat, Seattle, WA 98102 USA
[3] Merck Res Labs, N Wales, PA 19454 USA
来源
关键词
Early dropouts; Hurdle models; Offset; Overdispersion; Zero inflation; MULTIPLE IMPUTATION; POISSON REGRESSION; MODELS;
D O I
10.1080/19466315.2012.698937
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Counts of prespecified events are important endpoints for many safety and efficacy clinical trials. The conventional Poisson model might not be ideal due to three potential issues: (1) overdispersion arising from intra-subject correlation, (2) zero inflation when the prespecified event is rare, and (3) missing observations due to early dropouts. Negative binomial (NB), Poisson hurdle (PH), and negative binomial hurdle (NBH) models are more appropriate for overdispersed and/or zero-inflated count data. An offset can be included in these models to adjust for differential exposure duration due to early dropouts. In this article, we propose new link functions for the hurdle part of a PH/NBH model to facilitate testing for zero-inflation and model selection. The proposed link function particularly improves the model fit of a NBH model when an offset is included to adjust for differential exposure. A simulation study is conducted to compare the existing and proposed models, which are then applied to data from two clinical trials to demonstrate application and interpretation of these methods.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 50 条
  • [1] Mediation analysis for count and zero-inflated count data
    Cheng, Jing
    Cheng, Nancy F.
    Guo, Zijian
    Gregorich, Steven
    Ismail, Amid I.
    Gansky, Stuart A.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (09) : 2756 - 2774
  • [2] Semiparametric analysis of zero-inflated count data
    Lam, K. F.
    Xue, Hongqi
    Cheung, Yin Bun
    BIOMETRICS, 2006, 62 (04) : 996 - 1003
  • [3] The analysis of zero-inflated count data: Beyond zero-inflated Poisson regression.
    Loeys, Tom
    Moerkerke, Beatrijs
    De Smet, Olivia
    Buysse, Ann
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2012, 65 (01): : 163 - 180
  • [4] Semiparametric analysis of longitudinal zero-inflated count data
    Feng, Jiarui
    Zhu, Zhongyi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (01) : 61 - 72
  • [5] Hierarchical Bayesian analysis of correlated zero-inflated count data
    Dagne, GA
    BIOMETRICAL JOURNAL, 2004, 46 (06) : 653 - 663
  • [6] Modelling correlated zero-inflated count data
    Dobbie, MJ
    Welsh, AH
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2001, 43 (04) : 431 - 444
  • [7] Hurdle Model for Longitudinal Zero-Inflated Count Data Analysis
    Jin, Iktae
    Lee, Keunbaik
    KOREAN JOURNAL OF APPLIED STATISTICS, 2014, 27 (06) : 923 - 932
  • [8] Detecting overdispersion in count data: A zero-inflated Poisson regression analysis
    Jamil, Siti Afiqah Muhamad
    Abdullah, M. Asrul Affendi
    Long, Kek Sie
    Nor, Maria Elena
    Mohamed, Maryati
    Ismail, Norradihah
    1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [9] Multiple imputation of incomplete zero-inflated count data
    Kleinke, Kristian
    Reinecke, Jost
    STATISTICA NEERLANDICA, 2013, 67 (03) : 311 - 336
  • [10] Decision tree approaches for zero-inflated count data
    Lee, Seong-Keon
    Jin, Seohoon
    JOURNAL OF APPLIED STATISTICS, 2006, 33 (08) : 853 - 865