Influences of 1.5 °C and 2.0 °C global warming scenarios on water use efficiency dynamics in the sandy areas of northern China

被引:18
|
作者
Ma, Xiaofei [1 ,3 ]
Zhao, Chengyi [2 ]
Yan, Wei [4 ]
Zhao, Xiaoning [1 ]
机构
[1] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Land Sci Res Ctr, Nanjing 210044, Jiangsu, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Xinyang Normal Univ, Sch Geog Sci, Xinyang 46400, Peoples R China
基金
中国国家自然科学基金;
关键词
WUE; 1.5 degrees C warming; 2.0 degrees C warming; Desertification; Northern China; NET PRIMARY PRODUCTIVITY; TARIM RIVER-BASIN; BIOLOGICAL SOIL CRUSTS; CARBON-DIOXIDE; CLIMATE-CHANGE; COMBATING DESERTIFICATION; TERRESTRIAL ECOSYSTEMS; SPATIAL VARIABILITY; BINDING VEGETATION; TEMPORAL PATTERNS;
D O I
10.1016/j.scitotenv.2019.01.402
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Water use efficiency (WUE) is an important variable used in hydrometeorology study to reveal the links between carbon-water cycles in sandy ecosystems which are highly sensitive to climate change and can readily reflect the effects of it. In light of the Paris Agreement, it is essential to identify the regional impacts of 0.5 degrees C of additional global warming to inform climate adaptation and mitigation strategies. Using the modified Carnegie-Ames-Stanford Approach (CASA) and Advection-Aridity (AA) models with global warming values of 1.5 degrees C and 2.0 degrees C above preindustrial levels from Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b) datasets, we conducted a new set of climate simulations to assess the effects of climate on WUE (the ratio of net primary productivity (NPP) to actual evapotranspiration (ETa)) in different sandy land types (mobile sandy land, MSL; semimobile/semifixed sandy land, SMSF; and fixed sandy land, FSL) during the period of baseline (1986-2005) and future (2006-2100). The spatiotemporal patterns of ETa, NPP, and WUE mostly showed increasing trends; the value of WUE decreased (6.40%) only in MSL with an additional 0.5 degrees C of warming. Meteorological and vegetation factors determined the variations in WUE. With warming, only the correlation between precipitation and WUE decreased in the three sandy land types, and the leaf area index (LAI) increased with an additional 0.5 degrees C of warming. The desertification degree comprehensively reflects the linkages among the standardized precipitation evapotranspiration index (SPEI), LAI and WUE. Simulation results indicated the sandy area extent could potential increase by 20 x 10(4) km(2) per decade on average during 2016-2047 and that the increase could be gradual (2.60 x 10(4) km(2) per decade) after 2050 (2050-2100). These results highlight the benefits of limiting the global mean temperature change to 1.5 degrees C above preindustrial levels and can help identify the risk of desertification with an additional 0.5 degrees C of warming. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 50 条
  • [1] Projections of actual evapotranspiration under the 1.5 °C and 2.0 °C global warming scenarios in sandy areas in northern China
    Ma, Xiaofei
    Zhao, Chengyi
    Tao, Hui
    Zhu, Jianting
    Kundzewicz, Zbigniew W.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 645 : 1496 - 1508
  • [2] Projection of Net Primary Productivity under Global Warming Scenarios of 1.5 °C and 2.0 °C in Northern China Sandy Areas
    Ma, Xiaofei
    Huo, Tianci
    Zhao, Chengyi
    Yan, Wei
    Zhang, Xun
    [J]. ATMOSPHERE, 2020, 11 (01)
  • [3] Future water security in the major basins of China under the 1.5 °C and 2.0 °C global warming scenarios
    Zhai, Ran
    Tao, Fulu
    Chen, Yi
    Dai, Huichao
    Liu, Zhiwu
    Fu, Bojie
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 849
  • [4] Water use efficiency-based assessment of risk to terrestrial ecosystems in China under global warming targets of 1.5 °C and 2.0 °C
    Zhang, Chuanwei
    Yin, Yunhe
    Chen, Gang
    Deng, Haoyu
    Ma, Danyang
    Wu, Shaohong
    [J]. Ecological Indicators, 2022, 143
  • [5] Water use efficiency-based assessment of risk to terrestrial ecosystems in China under global warming targets of 1.5 °C and 2.0 °C
    Zhang, Chuanwei
    Yin, Yunhe
    Chen, Gang
    Deng, Haoyu
    Ma, Danyang
    Wu, Shaohong
    [J]. ECOLOGICAL INDICATORS, 2022, 143
  • [6] 1.5 °C and 2.0 °C of global warming intensifies the hydrological extremes in China
    Shu, Zhangkang
    Jin, Junliang
    Zhang, Jianyun
    Wang, Guoqing
    Lian, Yanqing
    Liu, Yanli
    Bao, Zhenxin
    Guan, Tiesheng
    He, Ruimin
    Liu, Cuishan
    Jing, Peiran
    [J]. JOURNAL OF HYDROLOGY, 2024, 635
  • [7] Projections of wildfire risk and activities under 1.5 °C and 2.0 °C global warming scenarios
    Peng, Xiaobin
    Yu, Miao
    Chen, Haishan
    Zhou, Botao
    Shi, Ying
    Yu, Li
    [J]. ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2023, 5 (03):
  • [8] Water balance components and climate extremes over Brazil under 1.5 °C and 2.0 °C of global warming scenarios
    Priscila da Silva Tavares
    Ricardo Acosta
    Paulo Nobre
    Nicole Costa Resende
    Sin Chan Chou
    André de Arruda Lyra
    [J]. Regional Environmental Change, 2023, 23
  • [9] Water balance components and climate extremes over Brazil under 1.5 °C and 2.0 °C of global warming scenarios
    da Silva Tavares, Priscila
    Acosta, Ricardo
    Nobre, Paulo
    Resende, Nicole Costa
    Chou, Sin Chan
    Lyra, Andre de Arruda
    [J]. REGIONAL ENVIRONMENTAL CHANGE, 2023, 23 (01)
  • [10] Impact of 1.5°C and 2.0°C global warming on aircraft takeoff performance in China
    Tianjun Zhou
    Liwen Ren
    Haiwen Liu
    Jingwen Lu
    [J]. Science Bulletin, 2018, 63 (11) : 700 - 707