CO2 Footprint of Thermal Versus Photothermal CO2 Catalysis

被引:51
|
作者
Wang, Shenghua [1 ]
Tountas, Athanasios A. [2 ]
Pan, Wangbo [1 ]
Zhao, Jianjiang [1 ]
He, Le [3 ]
Sun, Wei [1 ]
Yang, Deren [1 ]
Ozin, Geoffrey A. [2 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Toronto, Dept Chem, Solar Fuels Cluster, Mat Chem & Nanochem Res Grp, Toronto, ON M5S 3H6, Canada
[3] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Jiangsu, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
CO2; footprint; reduction; photothermal catalysis;
D O I
10.1002/smll.202007025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transformation of CO2 into value-added products via photothermal catalysis has become an increasingly popular route to help ameliorate the energy and environmental crisis derived from the continuing use of fossil fuels, as it can integrate light into well-established thermocatalysis processes. The question however remains whether negative CO2 emission could be achieved through photothermal catalytic reactions performed in facilities driven by electricity mainly derived from fossil energy. Herein, we propose universal equations that describe net CO2 emissions generated from operating thermocatalysis and photothermal reverse water-gas shift (RWGS) and Sabatier processes for batch and flow reactors. With these reactions as archetype model systems, the factors that will determine the final amount of effluent CO2 can be determined. The results of this study could provide useful guidelines for the future development of photothermal catalytic systems for CO2 reduction.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Comment on "CO2 Footprint of Thermal Versus Photothermal CO2 Catalysis"
    Sun, Fan
    Xing, Xueli
    Hong, Hui
    [J]. SMALL, 2023, 19 (11)
  • [2] Photothermal catalysis for CO2 conversion
    Zhou, Jian
    Liu, Hong
    Wang, Haiqing
    [J]. CHINESE CHEMICAL LETTERS, 2023, 34 (02)
  • [3] Photothermal catalysis for CO2 conversion
    Jian Zhou
    Hong Liu
    Haiqing Wang
    [J]. Chinese Chemical Letters, 2023, 34 (02) : 83 - 96
  • [4] Enhancing photothermal CO2 catalysis by thermal insulating substrates
    Cai, Mu-Jin
    Li, Chao-Ran
    He, Le
    [J]. RARE METALS, 2020, 39 (08) : 881 - 886
  • [5] Enhancing photothermal CO2 catalysis by thermal insulating substrates
    Mu-Jin Cai
    Chao-Ran Li
    Le He
    [J]. Rare Metals, 2020, 39 : 881 - 886
  • [6] Enhancing photothermal CO2 catalysis by thermal insulating substrates
    Mu-Jin Cai
    Chao-Ran Li
    Le He
    [J]. Rare Metals, 2020, 39 (08) : 881 - 886
  • [7] Recent advances in photothermal catalysis of CO2 reduction
    Yan S.
    Yang H.
    Chen Y.
    Wang X.
    Zeng K.
    Chen H.
    [J]. Huagong Xuebao/CIESC Journal, 2022, 73 (10): : 4298 - 4310
  • [8] Photothermal tandem catalysis for CO2 hydrogenation to methanol
    Song, Hui
    Ye, Jinhua
    [J]. CHEM, 2022, 8 (05): : 1181 - 1183
  • [9] CO2 Catalysis
    Kleij, Arjan W.
    North, Michael
    Urakawa, Atsushi
    [J]. CHEMSUSCHEM, 2017, 10 (06) : 1036 - 1038
  • [10] Photothermal Catalytic CO2 Conversion: Beyond Catalysis and Photocatalysis
    Fernando Fresno
    Ana Iglesias-Juez
    Juan M. Coronado
    [J]. Topics in Current Chemistry, 2023, 381