Interpretable Spatiotemporal Deep Learning Model for Traffic Flow Prediction based on Potential Energy Fields

被引:17
|
作者
Ji, Jiahao [1 ]
Wang, Jingyuan [2 ,3 ]
Jiang, Zhe [4 ]
Ma, Jingtian [1 ]
Zhang, Hu [1 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, Beijing, Peoples R China
[2] Beihang Univ, State Key Lab Software Dev Environm, Beijing, Peoples R China
[3] Beihang Univ, MOE Engn Res Ctr ACAT, Beijing, Peoples R China
[4] Univ Alabama, Dept Comp Sci, Tuscaloosa, AL 35487 USA
基金
中国国家自然科学基金;
关键词
Potential Energy Fields; Spatiotemporal Model; Interpretable Prediction; Deep Learning; CONVOLUTION NETWORK;
D O I
10.1109/ICDM50108.2020.00128
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic flow prediction is of great importance in traffic management and public safety, but is challenging due to the complex spatial-temporal dependencies as well as temporal dynamics. Existing work either focuses on traditional statistical models, which have limited prediction accuracy, or relies on black-box deep learning models, which have superior prediction accuracy but are hard to interpret. In contrast, we propose a novel interpretable spatiotemporal deep learning model for traffic flow prediction. Our main idea is to model the physics of traffic flow through a number of latent Spatio-Temporal Potential Energy Fields (ST-PEFs), similar to water flow driven by the gravity field. We develop a Wind field Decomposition (WD) algorithm to decompose traffic flow into poly-tree components so that ST-PEFs can be established. We then design a spatiotemporal deep learning model for the ST-PEFs, which consists of a temporal component (modeling the temporal correlation) and a spatial component (modeling the spatial dependencies). To the best of our knowledge, this is the first work that make traffic flow prediction based on ST-PEFs. Experimental results on real-world traffic datasets show the effectiveness of our model compared to the existing methods. A case study confirms our model interpretability.
引用
收藏
页码:1076 / 1081
页数:6
相关论文
共 50 条
  • [1] Traffic Flow Prediction Based on Spatiotemporal Potential Energy Fields
    Wang, Jingyuan
    Ji, Jiahao
    Jiang, Zhe
    Sun, Leilei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (09) : 9073 - 9087
  • [2] Traffic accident severity prediction based on interpretable deep learning model
    Pei, Yulong
    Wen, Yuhang
    Pan, Sheng
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2024,
  • [3] Traffic Flow Prediction Model Based on Deep Learning
    Wang, Bowen
    Wang, Jingsheng
    Zhang, Zeyou
    Zhao, Danting
    MAN-MACHINE-ENVIRONMENT SYSTEM ENGINEERING, MMESE, 2022, 800 : 739 - 745
  • [4] Deep learning based traffic flow prediction model on highway research
    Jia, Qingyang
    Zang, Jingfeng
    Liu, Shuanglin
    SEVENTH INTERNATIONAL CONFERENCE ON TRAFFIC ENGINEERING AND TRANSPORTATION SYSTEM, ICTETS 2023, 2024, 13064
  • [5] Interpretable deep learning model for building energy consumption prediction based on attention mechanism
    Gao, Yuan
    Ruan, Yingjun
    ENERGY AND BUILDINGS, 2021, 252
  • [6] Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism
    Wang, Jing-Doo
    Susanto, Chayadi Oktomy Noto
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (02): : 1711 - 1728
  • [7] FASTNN: A Deep Learning Approach for Traffic Flow Prediction Considering Spatiotemporal Features
    Zhou, Qianqian
    Chen, Nan
    Lin, Siwei
    SENSORS, 2022, 22 (18)
  • [8] Traffic flow prediction method based on deep learning
    Jiang, Luofeng
    Journal of Physics: Conference Series, 2020, 1646 (01)
  • [9] Supervised Deep Learning Based for Traffic Flow Prediction
    Tampubolon, Hendrik
    Hsiung, Pao-Ann
    2018 INTERNATIONAL CONFERENCE ON SMART GREEN TECHNOLOGY IN ELECTRICAL AND INFORMATION SYSTEMS (ICSGTEIS): SMART GREEN TECHNOLOGY FOR SUSTAINABLE LIVING, 2018, : 95 - 100
  • [10] An attention-based deep learning model for traffic flow prediction using spatiotemporal features towards sustainable smart city
    Vijayalakshmi, Balachandran
    Ramar, Kadarkarayandi
    Jhanjhi, N. Z.
    Verma, Sahil
    Kaliappan, Madasamy
    Vijayalakshmi, Kandasamy
    Vimal, Shanmuganathan
    Kavita
    Ghosh, Uttam
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2021, 34 (03)