Long-time behavior of solutions to Hamilton-Jacobi equations with quadratic gradient term

被引:4
|
作者
Fujita, Yasuhiro [1 ]
Loreti, Paola [2 ]
机构
[1] Toyama Univ, Dept Math, Toyama 9308555, Japan
[2] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Applica, Rome, Italy
关键词
Rates of convergence; Hamilton-Jacobi equation; Viscosity solutions; Semiconvexity; EUCLIDEAN-N-SPACE; ASYMPTOTIC SOLUTIONS; VISCOSITY SOLUTIONS; PERIODIC-SOLUTIONS; CONVERGENCE;
D O I
10.1007/s00030-009-0034-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a rate of convergence appearing in the long-time behavior of viscosity solutions of the Cauchy problem for the Hamilton-Jacobi equation u(t)(x, t) + alpha x . Du(x, t) + beta vertical bar Du(x, t)vertical bar(2) = f(x) in R(n) x (0, infinity), where alpha, beta > 0 are constants and f is a Lipschitz and semiconvex function on R(n). Our goal of this paper is to show that the semiconvexity property of f is an important factor which determines this rate of convergence. We also establish existence, uniqueness and Lipschitz continuity of viscosity solutions of the Cauchy problem and the corresponding ergodic problem for Hamilton-Jacobi equations in R(n)
引用
收藏
页码:771 / 791
页数:21
相关论文
共 50 条
  • [1] Long-time behavior of solutions to Hamilton–Jacobi equations with quadratic gradient term
    Yasuhiro Fujita
    Paola Loreti
    Nonlinear Differential Equations and Applications NoDEA, 2009, 16
  • [2] Long-time behavior of stochastic Hamilton-Jacobi equations
    Gassiat, Paul
    Gess, Benjamin
    Lions, Pierre-Louis
    Souganidis, Panagiotis E.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (04)
  • [3] Long-time Behavior of Solutions of Hamilton-Jacobi Equations with Convex and Coercive Hamiltonians
    Ichihara, Naoyuki
    Ishii, Hitoshi
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 194 (02) : 383 - 419
  • [4] Long-time behaviour of stochastic Hamilton-Jacobi equations
    Gassiat, Paul
    Gess, Benjamin
    Lions, Pierre-Louis
    Souganidis, Panagiotis E.
    arXiv, 2022,
  • [5] A PDE Approach to the Long-Time Asymptotic Solutions of Contact Hamilton-Jacobi Equations
    WANG Yujie
    LI Xia
    Wuhan University Journal of Natural Sciences, 2022, 27 (03) : 189 - 194
  • [6] Long-time behaviour of the solutions of a class of nonlinear parabolic and Hamilton-Jacobi equations
    Namah, G
    Roquejoffre, JM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (12): : 1367 - 1370
  • [7] On the large time behavior of solutions of Hamilton-Jacobi equations
    Barles, G
    Souganidis, PE
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (04) : 925 - 939
  • [8] Long-time behaviour of the solutions of one-dimensional nonlinear Hamilton-Jacobi equations
    Roquejoffre, JM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (02): : 185 - 189
  • [9] LONG-TIME ASYMPTOTIC SOLUTIONS OF CONVEX HAMILTON-JACOBI EQUATIONS DEPENDING ON UNKNOWN FUNCTIONS
    Li, Xia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (10) : 5151 - 5162
  • [10] Long-time Behavior of Solutions of Hamilton–Jacobi Equations with Convex and Coercive Hamiltonians
    Naoyuki Ichihara
    Hitoshi Ishii
    Archive for Rational Mechanics and Analysis, 2009, 194 : 383 - 419