RANDOM DATA THEORY FOR THE CUBIC FOURTH-ORDER NONLINEAR SCHRODINGER EQUATION

被引:3
|
作者
Van Duong Dinh [1 ,2 ]
机构
[1] Univ Lille, CNRS, UMR 8524, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[2] HCMC Univ Educ, Dept Math, 280 An Duong Vuong, Ho Chi Minh, Vietnam
关键词
Fourth-order nonlinear Schrodinger equation; almost sure well-posedness; wiener randomization; probabilistic Strichartz estimates; GLOBAL WELL-POSEDNESS; DATA CAUCHY-THEORY; WAVE-EQUATIONS; SCATTERING; NLS;
D O I
10.3934/cpaa.2020284
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the cubic nonlinear fourth-order Schrodinger equation i partial derivative(t)u - Delta(2)u + mu Delta u = +/-vertical bar u vertical bar(2)u, mu >= 0 on R-N, N >= 5 with random initial data. We prove almost sure local well-posedness below the scaling critical regularity. We also prove probabilistic small data global well-posedness and scattering. Finally, we prove the global well-posedness and scattering with a large probability for initial data randomized on dilated cubes.
引用
下载
收藏
页码:651 / 680
页数:30
相关论文
共 50 条