RANDOM DATA THEORY FOR THE CUBIC FOURTH-ORDER NONLINEAR SCHRODINGER EQUATION
被引:3
|
作者:
Van Duong Dinh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lille, CNRS, UMR 8524, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
HCMC Univ Educ, Dept Math, 280 An Duong Vuong, Ho Chi Minh, VietnamUniv Lille, CNRS, UMR 8524, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
Van Duong Dinh
[1
,2
]
机构:
[1] Univ Lille, CNRS, UMR 8524, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[2] HCMC Univ Educ, Dept Math, 280 An Duong Vuong, Ho Chi Minh, Vietnam
Fourth-order nonlinear Schrodinger equation;
almost sure well-posedness;
wiener randomization;
probabilistic Strichartz estimates;
GLOBAL WELL-POSEDNESS;
DATA CAUCHY-THEORY;
WAVE-EQUATIONS;
SCATTERING;
NLS;
D O I:
10.3934/cpaa.2020284
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the cubic nonlinear fourth-order Schrodinger equation i partial derivative(t)u - Delta(2)u + mu Delta u = +/-vertical bar u vertical bar(2)u, mu >= 0 on R-N, N >= 5 with random initial data. We prove almost sure local well-posedness below the scaling critical regularity. We also prove probabilistic small data global well-posedness and scattering. Finally, we prove the global well-posedness and scattering with a large probability for initial data randomized on dilated cubes.
机构:
Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
Beijing Ctr Math & Informat Interdisciplinary Sci, Beijing 100048, Peoples R ChinaInst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
Miao, Changxing
Zheng, Jiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nice Sophia Antipolis, F-06108 Nice 02, FranceInst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
机构:
N China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R ChinaN China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China