THE K-THEORY SPECTRUM OF VARIETIES

被引:7
|
作者
Campbell, Jonathan A. [1 ]
机构
[1] Vanderbilt Univ, Dept Math, 1326 Stevenson Ctr, Nashville, TN 37240 USA
关键词
Grothendick ring of varieties; K-theory; S-center dot-construction; motivic measure; LOOP SPACE; ALGEBRAS; MODULES;
D O I
10.1090/tran/7648
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We produce an E-infinity-ring spectrum K(Var(/kappa)) whose components model the Grothendieck ring of varieties (over a field kappa) K-0(Var(/kappa)). This is achieved by slightly modifying Waldhausen categories and the Waldhausen S-center dot-construction. As an application, we produce liftings of various motivic measures to spectrum-level maps, including maps into Waldhausen's K-theory of spaces A(*) and to K(Q).
引用
收藏
页码:7845 / 7884
页数:40
相关论文
共 50 条
  • [1] On the algebraic K-theory of the complex K-theory spectrum
    Christian Ausoni
    Inventiones mathematicae, 2010, 180 : 611 - 668
  • [2] On the algebraic K-theory of the complex K-theory spectrum
    Ausoni, Christian
    INVENTIONES MATHEMATICAE, 2010, 180 (03) : 611 - 668
  • [3] K-theory of minuscule varieties
    Buch, Anders Skovsted
    Samuel, Matthew J.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 719 : 133 - 171
  • [4] K-theory of weight varieties
    Leung, Ho-Hon
    NEW YORK JOURNAL OF MATHEMATICS, 2011, 17 : 251 - 267
  • [5] THE K-THEORY OF TORIC VARIETIES
    Cortinas, G.
    Haesemeyer, C.
    Walker, Mark E.
    Weibel, C.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (06) : 3325 - 3341
  • [6] K-THEORY OF SINGULAR-VARIETIES
    SRINIVAS, V
    CURRENT SCIENCE, 1990, 59 (06): : 312 - 314
  • [7] The higher K-theory of complex varieties
    Pedrini, C
    Weibel, C
    K-THEORY, 2000, 21 (04): : 367 - 385
  • [8] K-THEORY OF CONES OF SMOOTH VARIETIES
    Cortinas, G.
    Haesemeyer, C.
    Walker, M. E.
    Weibel, C.
    JOURNAL OF ALGEBRAIC GEOMETRY, 2013, 22 (01) : 13 - 34
  • [9] Milnor K-theory of smooth varieties
    Akhtar, R
    K-THEORY, 2004, 32 (03): : 269 - 291
  • [10] Quantum K-theory of incidence varieties
    Xu, Weihong
    EUROPEAN JOURNAL OF MATHEMATICS, 2024, 10 (02)