Moving overlapping grid methodology of spectral accuracy for incompressible flow solutions around rigid bodies in motion

被引:12
|
作者
Merrill, Brandon E. [1 ]
Peet, Yulia T. [2 ]
机构
[1] Raytheon Missile Syst Modeling Simulat & Anal, Tucson, AZ 85756 USA
[2] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
关键词
Moving grids; Domain decomposition; Spectral elements; Navier-Stokes equations; FINITE-ELEMENT FORMULATION; IMMERSED BOUNDARY METHOD; NAVIER-STOKES EQUATIONS; 3-DIMENSIONAL FLOWS; DIFFERENCE-METHODS; STABILITY ANALYSIS; FICTITIOUS DOMAIN; ROTATING SPHERE; LAMINAR-FLOW; SIMULATION;
D O I
10.1016/j.jcp.2019.01.048
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The simulation of fluid flow around moving rigid bodies has proven to be a difficult task for traditional computational fluid dynamics solvers. Decomposing the global domain into overlapping subdomains and allowing each subdomain to move independently, permits solutions to many flow problems with complex moving geometries to be determined in a straightforward manner. The present development of the moving overlapping grid method is built within a spectral element method incompressible flow solver, and uses an Arbitrary Lagrangian-Eulerian formulation of the governing equations to prescribe subdomain motions. The method maintains global spectral spatial accuracy across the subdomains with the polynomial refinement. The global high-order temporal accuracy of the method is also maintained through subdomain coupling enforced by an explicit interface temporal extrapolation scheme. The method produces aerodynamic forces and vortex shedding around two-and three-dimensional moving rigid bodies that is in line with published experimental and computational data. Additionally, the method achieves near linear computational scaling to thousands of cores. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 151
页数:31
相关论文
共 24 条