On solutions of the second generalization of d'Alembert's functional equation on a restricted domain

被引:2
|
作者
Bahyrycz, Anna [1 ]
机构
[1] Pedag Univ, Dept Math, PL-30084 Krakow, Poland
关键词
Second generalization of d'Alembert's; functional equation; d'Alembert's functional equation; Abelian group; Restricted domain; Quadratically closed field; Lifting; SEMIGROUPS;
D O I
10.1016/j.amc.2013.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a subgroup of an abelian group (G, +) and P be a quadratically closed field with char P not equal 2. We give a full description of all pairs of functions f : G -> P, g : A -> P satisfying the equation f(x + y) + f(x - y) = 2g(x)f(y) (x,y) is an element of A x G. We present an example of solution (f, g) of (a) that cannot be extended to a solution (f, (g) over bar) of the equation f(x + y) + f(x - y) = 2 (g) over bar (x)f(y) x,y is an element of G. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:209 / 215
页数:7
相关论文
共 50 条
  • [1] On solutions of the d’Alembert equation on a restricted domain
    Anna Bahyrycz
    Janusz Brzdȩk
    Aequationes mathematicae, 2013, 85 : 169 - 183
  • [2] On solutions of the d'Alembert equation on a restricted domain
    Bahyrycz, Anna
    Brzdek, Janusz
    AEQUATIONES MATHEMATICAE, 2013, 85 (1-2) : 169 - 183
  • [3] A note on d’Alembert’s functional equation on a restricted domain
    Anna Bahyrycz
    Janusz Brzdȩk
    Aequationes mathematicae, 2014, 88 : 169 - 173
  • [4] A note on d'Alembert's functional equation on a restricted domain
    Bahyrycz, Anna
    Brzdek, Janusz
    AEQUATIONES MATHEMATICAE, 2014, 88 (1-2) : 169 - 173
  • [5] A generalization of d’Alembert’s other functional equation on semigroups
    Omar Ajebbar
    Elhoucien Elqorachi
    Aequationes mathematicae, 2020, 94 : 913 - 930
  • [6] A generalization of d'Alembert's other functional equation on semigroups
    Ajebbar, Omar
    Elqorachi, Elhoucien
    AEQUATIONES MATHEMATICAE, 2020, 94 (05) : 913 - 930
  • [7] PERIODIC SOLUTIONS OF D'ALEMBERT'S FUNCTIONAL EQUATION.
    Hirano, Tetsutaro
    Report of the College of Engineering of Hosei University, 1983, (22): : 1 - 9
  • [8] The stability of d'Alembert's functional equation
    Tyrala I.
    aequationes mathematicae, 2005, 69 (3) : 250 - 256
  • [9] d'Alembert's other functional equation
    Ebanks, Bruce
    Stetkaer, Henrik
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (3-4): : 319 - 349
  • [10] A variant of d’Alembert’s functional equation
    Henrik Stetkær
    Aequationes mathematicae, 2015, 89 : 657 - 662