共 1 条
The "smallest" ring of polynomial invariants of a permutation group which has no finite SAGBI bases w.r.t. any admissible order
被引:4
|作者:
Göbel, M
[1
]
机构:
[1] Int Comp Sci Inst, Berkeley, CA 94704 USA
关键词:
algorithmic invariant theory;
SPIGBI basis;
alternating group A(3);
D O I:
10.1016/S0304-3975(98)00340-5
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
We show that the ring of polynomial invariants C[X-1,X-2,X-3](A3) of the alternating group A(3) is the smallest ring of polynomial invariants of a permutation group, which has no finite SAGBI basis w.r.t. any admissible order. "Smallest" refers to the number of variables, which is 3, and to the number of generators of the invariant ring, which is 4. (C) 1999 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:177 / 184
页数:8
相关论文