Real-time automated spectral assessment of the BOLD response for neurofeedback at 3 and 7 T

被引:12
|
作者
Koush, Yury [1 ,2 ,3 ]
Elliott, Mark A. [4 ]
Scharnowski, Frank [1 ,2 ]
Mathiak, Klaus [3 ,5 ]
机构
[1] Univ Geneva, Dept Radiol & Med Informat, CH-1211 Geneva, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland
[3] Rhein Westfal TH Aachen, Dept Psychiat Psychotherapy & Psychosomat, Aachen, Germany
[4] Univ Penn, Dept Radiol, CMROI, Philadelphia, PA 19104 USA
[5] Res Ctr Julich, Inst Neurosci & Med INM1, Julich, Germany
基金
瑞士国家科学基金会;
关键词
Real-time; Feedback; Neurofeedback; fSVPS; MRS; fMRI; BOLD; High and ultra-high magnetic field; Time and frequency domain estimation; PROSPECTIVE MOTION CORRECTION; VIVO H-1-NMR SPECTROSCOPY; HUMAN VISUAL-CORTEX; SPIN-ECHO FMRI; HUMAN BRAIN; PROTON SPECTROSCOPY; CORTICAL ACTIVITY; MR SPECTROSCOPY; REMOVING MOTION; SELF-REGULATION;
D O I
10.1016/j.jneumeth.2013.05.002
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Echo-planar imaging is the dominant functional MRI data acquisition scheme for evaluating the BOLD signal. To date, it remains the only approach providing neurofeedback from spatially localized brain activity. Real-time functional single-voxel proton spectroscopy (fSVPS) may be an alternative for spatially specific BOLD neurofeedback at 7T because it allows for a precise estimation of the local T2* signal, EPI-specific artifacts may be avoided, and the signal contrast may increase. In order to explore and optimize this alternative neurofeedback approach, we tested fully automated real-time fSVPS spectral estimation procedures to approximate T2* BOLD signal changes from the unsuppressed water peak, i.e. lorentzian non-linear complex spectral fit (LNLCSF) in frequency and frequency-time domain. The proposed approaches do not require additional spectroscopic localizers in contrast to conventional T2* approximation based on linear regression of the free induction decay (FID). For methods comparison, we evaluated quality measures for signals from the motor and the visual cortex as well as a real-time feedback condition at high (3 T) and at ultra-high (7T) magnetic field strengths. Using these methods, we achieved reliable and fast water peak spectral parameter estimations. At 7T, we observed an absolute increase of spectra line narrowing due to the-BOLD effect, but quality measures did not improve due to artifactual line broadening. Overall, the automated fSVPS approach can be used to assess dynamic spectral changes in real-time, and to provide localized T2* neurofeedback at 3 and 7T. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 160
页数:13
相关论文
共 50 条
  • [1] Computing moment-to-moment BOLD activation for real-time neurofeedback
    Hinds, Oliver
    Ghosh, Satrajit
    Thompson, Todd W.
    Yoo, Julie J.
    Whitfield-Gabrieli, Susan
    Triantafyllou, Christina
    Gabrieli, John D. E.
    NEUROIMAGE, 2011, 54 (01) : 361 - 368
  • [2] Driver State Regulation via Real-Time Neurofeedback in Partially Automated Driving
    Nobari, Khazar Dargahi
    Bartsch, Katharina
    Albers, Franz
    Bertram, Torsten
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [3] Evaluation of an automated real-time spectral analysis technique
    Rickey, DW
    Fenster, A
    ULTRASOUND IN MEDICINE AND BIOLOGY, 1996, 22 (01): : 61 - 73
  • [4] Comparison of Real-Time Water Proton Spectroscopy and Echo-Planar Imaging Sensitivity to the BOLD Effect at 3 T and at 7 T
    Koush, Yury
    Elliott, Mark A.
    Scharnowski, Frank
    Mathiak, Klaus
    PLOS ONE, 2014, 9 (03):
  • [5] Advances in fMRI Real-Time Neurofeedback
    Watanabe, Takeo
    Sasaki, Yuka
    Shibata, Kazuhisa
    Kawato, Mitsuo
    TRENDS IN COGNITIVE SCIENCES, 2017, 21 (12) : 997 - 1010
  • [6] Stability of MEG for Real-Time Neurofeedback
    Foldes, S. T.
    Vinjamuri, R. K.
    Wang, W.
    Weber, D. J.
    Collinger, J. L.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 5778 - 5781
  • [7] KM3NeT real-time analysis framework<bold> </bold>
    Mastrodicasa, M.
    Celli, S.
    Demin, P.
    de Jeneret, J. De Favereau
    Dornic, D.
    Filippini, F.
    Giorgio, E.
    Le Guirriec, E.
    Le Stum, S.
    Gonzalez, J. Palacios
    Tanasijczuk, A. J.
    Vannoye, G.
    Veutro, A.
    Zegarelli, A.
    XVIII INTERNATIONAL CONFERENCE ON TOPICS IN ASTROPARTICLE AND UNDERGROUND PHYSICS, 2024,
  • [8] Real-Time Road Quality Assessment Using Smartphones and Cloud Lambda Architecture<bold> </bold>
    Badurowicz, Marcin
    Cieplak, Tomasz
    III INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN ENGINEERING SCIENCE (CMES 18), 2019, 252
  • [9] Real-time Brain Assessment for Adaptive Virtual Reality Game : a Neurofeedback Approach
    Ben Abdessalem, Hamdi
    Frasson, Claude
    BRAIN FUNCTION ASSESSMENT IN LEARNING, 2017, 10512 : 133 - 143
  • [10] Real-time fMRI neurofeedback: Progress and challenges
    Sulzer, J.
    Haller, S.
    Scharnowski, F.
    Weiskopf, N.
    Birbaumer, N.
    Blefari, M. L.
    Bruehl, A. B.
    Cohen, L. G.
    deCharms, R. C.
    Gassert, R.
    Goebel, R.
    Herwig, U.
    LaConte, S.
    Linden, D.
    Luft, A.
    Seifritz, E.
    Sitaram, R.
    NEUROIMAGE, 2013, 76 (01) : 386 - 399