On Equivalence of Linear Problems of Efficiency and Risk Control under Uncertainty

被引:0
|
作者
Gorelik, Victor [1 ]
Zolotova, Tatiana [2 ]
Prokhorova, Maria [3 ]
机构
[1] Moscow State Pedag Univ, Dept Comp Sci & Discrete Math, Dept Simulat Syst & Operat Res, Dorodnicyn Comp Ctr,FRC CSC RAS, Moscow, Russia
[2] Financial Univ Govt Russian Federat, Dept Data Anal Decis Making & Financial Technol, Moscow, Russia
[3] ZAO Consultant Plus New Technol, Dept Informat Technol, Moscow, Russia
关键词
convolution of criteria; efficiency; risk function;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Linear two-criteria problems of efficiency and risk control are considered. The minimax risk function and the risk function in the polyhedral 1-metric as risk assessment are used. Two-criteria problems are formalized in the form of the sum type convolution of the efficiency and risk criteria and of the ratio type convolution. It is shown that the solutions of the corresponding linear decision-making problems coincide. The relations are found in the explicit form between the parameters of all problems for which they are equivalent.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] ASYMPTOTIC EQUIVALENCE OF RISK MEASURES UNDER DEPENDENCE UNCERTAINTY
    Cai, Jun
    Liu, Haiyan
    Wang, Ruodu
    MATHEMATICAL FINANCE, 2018, 28 (01) : 29 - 49
  • [2] A Class of Control Problems Under Uncertainty
    Grigorenko N.L.
    Kamzolkin D.V.
    Luk’yanova L.N.
    Pivovarchuk D.G.
    Computational Mathematics and Modeling, 2016, 27 (3) : 290 - 301
  • [3] Capital rationing problems under uncertainty and risk
    Beraldi, Patrizia
    Bruni, Maria Elena
    Violi, Antonio
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 51 (03) : 1375 - 1396
  • [4] Capital rationing problems under uncertainty and risk
    Patrizia Beraldi
    Maria Elena Bruni
    Antonio Violi
    Computational Optimization and Applications, 2012, 51 : 1375 - 1396
  • [5] Optimal control of linear systems under uncertainty
    Gabasov, R.
    Kirillova, F. M.
    Poyasok, E. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (03): : 56 - 72
  • [6] Optimal control of linear systems under uncertainty
    Gabasov, R.
    Kirillova, F. M.
    Poyasok, E. I.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 268 : 95 - 111
  • [7] Optimal control of linear systems under uncertainty
    R. Gabasov
    F. M. Kirillova
    E. I. Poyasok
    Proceedings of the Steklov Institute of Mathematics, 2010, 268 : 95 - 111
  • [8] 2 PROBLEMS OF CONTROL UNDER CONDITIONS OF UNCERTAINTY
    PLOTNIKOV, AV
    CYBERNETICS AND SYSTEMS ANALYSIS, 1993, 29 (04) : 567 - 573
  • [9] On one class of control problems under uncertainty
    N. L. Grigorenko
    D. V. Kamzolkin
    L. N. Luk’yanova
    D. G. Pivovarchuk
    Proceedings of the Steklov Institute of Mathematics, 2012, 276 : 88 - 96
  • [10] On One Class of Control Problems under Uncertainty
    Grigorenko, N. L.
    Kamzolkin, D. V.
    Luk'yanova, L. N.
    Pivovarchuk, D. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 276 : S88 - S96