Vibration and acoustic properties of composites with embedded lithium-ion polymer batteries

被引:39
|
作者
Galos, Joel [1 ]
Khatibi, Akbar Afaghi [1 ]
Mouritz, Adrian P. [1 ]
机构
[1] RMIT Univ, Sch Engn, GPO Box 2476, Melbourne, Vic 3001, Australia
基金
澳大利亚研究理事会;
关键词
Composites; Energy storage; Batteries; Acoustic; Vibration; EXPERIMENTAL MODAL-ANALYSIS; DAMPING PROPERTIES; DAMAGE DETECTION; ENERGY-STORAGE; FINITE-ELEMENT; WAVE-NUMBER;
D O I
10.1016/j.compstruct.2019.04.013
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Composite structures containing lithium-ion polymer (LiPo) batteries are being developed for electrical energy storage in motor vehicles and other applications. This paper presents an experimental and numerical study into the effect of embedding (LiPo) batteries into carbon fibre laminates and sandwich panels on the vibration and acoustic properties. The vibration responses (modal frequencies, damping) were measured experimentally using Laser Doppler vibrometry and calculated numerically using finite element modal analysis. The results reveal that careful placement of LiPo batteries within composite structures is needed to control the vibration properties. Embedding batteries at the nodal points increases the vibration bending damping ratio for modes II and III, with improvements of up to 220% (mode II) and 310% (mode III) for the laminate and sandwich composite, respectively. LiPo batteries also improve the acoustic performance by increasing the coincidence frequency and decreasing the wavenumber amplitude at frequencies above the first vibration bending mode. The results indicate that the judicious placement of embedded LiPo batteries can improve the vibration damping properties of both carbon fibre laminates and sandwich composites.
引用
收藏
页码:677 / 686
页数:10
相关论文
共 50 条
  • [1] Tensile properties of multifunctional composites embedded with lithium-ion polymer batteries
    Pattarakunnan, K.
    Galos, J.
    Das, R.
    Mouritz, A. P.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 136 (136)
  • [2] Compression properties of multifunctional composite structures with embedded lithium-ion polymer batteries
    Attar, P.
    Galos, J.
    Best, A. S.
    Mouritz, A. P.
    COMPOSITE STRUCTURES, 2020, 237
  • [3] Multifunctional sandwich composites containing embedded lithium-ion polymer batteries under bending loads
    Galos, J.
    Best, A. S.
    Mouritz, A. P.
    MATERIALS & DESIGN, 2020, 185
  • [4] The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries
    Badi, Nacer
    Theodore, Azemtsop Manfo
    Alghamdi, Saleh A.
    Al-Aoh, Hatem A.
    Lakhouit, Abderrahim
    Singh, Pramod K.
    Norrrahim, Mohd Nor Faiz
    Nath, Gaurav
    POLYMERS, 2022, 14 (15)
  • [5] Polymer electrolytes for lithium-ion batteries
    Meyer, WH
    ADVANCED MATERIALS, 1998, 10 (06) : 439 - +
  • [6] Benefits of performance standards for lithium-ion and lithium-ion polymer batteries
    Thomas, G
    SEVENTEENTH ANNUAL BATTERY CONFERENCE ON APPLICATIONS AND ADVANCES, PROCEEDINGS, 2002, : 223 - 225
  • [7] Carbon-silicon anode composites for lithium-ion (polymer) rechargeable batteries
    Onishchenko, D. V.
    Popovich, A. A.
    Boiko, Yu. N.
    RUSSIAN JOURNAL OF NON-FERROUS METALS, 2010, 51 (02) : 169 - 172
  • [8] Internal heating of energy storage composites containing lithium-ion polymer batteries
    Pattarakunnan, K.
    Galos, J.
    Das, R.
    Best, A. S.
    Kyratzis, I. L.
    Mouritz, A. P.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2023, 166
  • [9] Carbon-silicon anode composites for lithium-ion (polymer) rechargeable batteries
    D. V. Onishchenko
    A. A. Popovich
    Yu. N. Boiko
    Russian Journal of Non-Ferrous Metals, 2010, 51 : 169 - 172
  • [10] Transport properties of lithium-ion of electrolyte used in lithium-ion batteries
    Zhao Jishi
    Wang Li
    He Xiangming
    Jiang Changyin
    Wan Chunrong
    PROGRESS IN CHEMISTRY, 2007, 19 (10) : 1467 - 1474