Connectedness of finite distance graphs

被引:2
|
作者
Gomez-Perez, Domingo [2 ]
Gutierrez, Jaime [1 ]
Ibeas, Alvar [1 ]
机构
[1] Univ Cantabria, Dep Matemat Aplicada CC Comp, E-39005 Santander, Spain
[2] Univ Cantabria, Dep Matemat Estadist & Comp, E-39005 Santander, Spain
关键词
Distance graphs; circulant graphs; connectedness; TOEPLITZ GRAPHS; LOOP NETWORKS;
D O I
10.1002/net.21465
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We describe a polynomial-time algorithm for deciding whether a given distance graph with a finite number of vertices is connected. This problem was conjectured to be NP-hard in Draque Penso et al. (C) 2012 Wiley Periodicals, Inc. NETWORKS, 2012
引用
收藏
页码:204 / 209
页数:6
相关论文
共 50 条
  • [1] On connectedness of power graphs of finite groups
    Panda, Ramesh Prasad
    Krishna, K., V
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (10)
  • [2] On the connectedness of the complement of a ball in distance-regular graphs
    Cioaba, Sebastian M.
    Koolen, Jack H.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 38 (01) : 191 - 195
  • [3] On the connectedness of the complement of a ball in distance-regular graphs
    Sebastian M. Cioabă
    Jack H. Koolen
    Journal of Algebraic Combinatorics, 2013, 38 : 191 - 195
  • [4] ON FINITE PRIME DISTANCE GRAPHS
    Parthiban, A.
    Samdanielthompson, G.
    Kumar, K. Sathish
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (01): : 22 - 26
  • [5] ON FINITE PRIME DISTANCE GRAPHS
    A. Parthiban
    G. Samdanielthompson
    K. Sathish Kumar
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 22 - 26
  • [6] Distance graphs with finite chromatic number
    Ruzsa, IZ
    Tuza, Z
    Voigt, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 85 (01) : 181 - 187
  • [7] Finite prime distance graphs and 2-odd graphs
    Laison, Joshua D.
    Starr, Colin
    Walker, Andrea
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2281 - 2291
  • [8] Universality for the Distance in Finite Variance Random Graphs
    Henri van den Esker
    Remco van der Hofstad
    Gerard Hooghiemstra
    Journal of Statistical Physics, 2008, 133 : 169 - 202
  • [9] On finite 2-distance-primitive graphs
    Ruan, Jie
    Liu, Weijun
    Jin, Wei
    DISCRETE MATHEMATICS, 2024, 347 (07)
  • [10] Finite 2-Distance Transitive Graphs
    Corr, Brian P.
    Jin, Wei
    Schneider, Csaba
    JOURNAL OF GRAPH THEORY, 2017, 86 (01) : 78 - 91