Convergence of an inexact smoothing method for mathematical programs with equilibrium constraints

被引:6
|
作者
Wan, Zhong [1 ]
Wang, Yiju
机构
[1] Cent S Univ, Coll Math Sci & Computat Technol, Changsha 410083, Peoples R China
[2] Qufu Normal Univ, Sch Operat Res & Management Sci, Rizhao Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
inexact solution; mathematical programs with equilibrium constraints; smoothing continuation method;
D O I
10.1080/01630560600657323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an inexact smoothing continuation method for mathematical problem with complementarity constraints. Under suitable conditions, we establish the convergence of the proposed method by showing that any accumulation point of the generated sequence is a B-stationary point of the problem.
引用
收藏
页码:485 / 495
页数:11
相关论文
共 50 条
  • [1] A smoothing method for mathematical programs with equilibrium constraints
    Facchinei F.
    Jiang H.
    Qi L.
    [J]. Mathematical Programming, 1999, 85 (1) : 107 - 134
  • [2] A smoothing method for mathematical programs with equilibrium constraints
    Facchinei, F
    Jiang, HY
    Qi, LQ
    [J]. MATHEMATICAL PROGRAMMING, 1999, 85 (01) : 107 - 134
  • [3] Mathematical programs with complementarity constraints: Convergence properties of a smoothing method
    Bouza, Gemayqzel
    Still, Georg
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2007, 32 (02) : 467 - 483
  • [4] Smoothing methods for mathematical programs with equilibrium constraints
    Fukushima, M
    Lin, GH
    [J]. INTERNATIONAL CONFERENCE ON INFORMATICS RESEARCH FOR DEVELOPMENT OF KNOWLEDGE SOCIETY INFRASTRUCTURE, PROCEEDINGS, 2004, : 206 - 213
  • [5] A new smoothing technique for mathematical programs with equilibrium constraints
    Zhi-bin Zhu
    Zhi-jun Luo
    Ji-wen Zeng
    [J]. Applied Mathematics and Mechanics, 2007, 28 : 1407 - 1414
  • [6] A new smoothing technique for mathematical programs with equilibrium constraints
    朱志斌
    罗志军
    曾吉文
    [J]. Applied Mathematics and Mechanics(English Edition), 2007, (10) : 1407 - 1414
  • [7] A new smoothing technique for mathematical programs with equilibrium constraints
    Zhu Zhi-bin
    Luo Zhi-jun
    Zeng Ji-wen
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2007, 28 (10) : 1407 - 1414
  • [8] Smoothing partial exact penalty splitting method for mathematical programs with equilibrium constraints
    Suhong Jiang
    Jin Zhang
    Caihua Chen
    Guihua Lin
    [J]. Journal of Global Optimization, 2018, 70 : 223 - 236
  • [9] Smoothing partial exact penalty splitting method for mathematical programs with equilibrium constraints
    Jiang, Suhong
    Zhang, Jin
    Chen, Caihua
    Lin, Guihua
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (01) : 223 - 236
  • [10] A SMOOTHING METHOD FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
    He, Suxiang
    Shen, Tingting
    Zhang, Jie
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2020, 16 (04): : 525 - 545