Data structures for halfplane proximity queries and incremental Voronoi diagrams

被引:13
|
作者
Aronov, B
Bose, P
Demaine, ED
Gudmundsson, J
Iacono, J
Langerman, S
Smid, M
机构
[1] Polytech Univ, Dept CIS, Brooklyn, NY 11201 USA
[2] Carleton Univ, Sch Comp Sci, Ottawa, ON K1S 5B6, Canada
[3] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[4] Natl ICT Australia, Sydney, NSW, Australia
[5] Univ Libre Bruxelles, Dept Informat, Brussels, Belgium
来源
关键词
D O I
10.1007/11682462_12
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider preprocessing a set S of n points in the plane that are in convex position into a data structure supporting queries of the following form: given a point q and a directed line l in the plane, report the point of S that is farthest from (or, alternatively, nearest to) the point q subject to being to the left of line l. We present two data structures for this problem. The first data structure uses O(n(1+epsilon)) space and preprocessing time, and answers queries in O(2(1/epsilon) log n) time. The second data structure uses O(n log(3) n) space and polynomial preprocessing time, and answers queries in O(log n) time. These are the first solutions to the problem with O(log n) query time and o(n(2)) space. In the process of developing the second data structure, we develop a new representation of nearest-point and farthest-point Voronoi diagrams of points in convex position. This representation supports insertion of new points in counterclockwise order using only O(log n) amortized pointer changes, subject to supporting O(log n)-time point-location queries, even though every such update may make theta(n) combinatorial changes to the Voronoi diagram. This data structure is the first demonstration that deterministically and incrementally constructed Voronoi diagrams can be maintained in o(n) pointer changes per operation while keeping O(log n)-time point-location queries.
引用
收藏
页码:80 / 92
页数:13
相关论文
共 50 条
  • [1] Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams
    Aronov, Boris
    Bose, Prosenjit
    Demaine, Erik D.
    Gudmundsson, Joachim
    Iacono, John
    Langerman, Stefan
    Smid, Michiel
    ALGORITHMICA, 2018, 80 (11) : 3316 - 3334
  • [2] Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams
    Boris Aronov
    Prosenjit Bose
    Erik D. Demaine
    Joachim Gudmundsson
    John Iacono
    Stefan Langerman
    Michiel Smid
    Algorithmica, 2018, 80 : 3316 - 3334
  • [3] Incremental Voronoi Diagrams
    Allen, Sarah R.
    Barba, Luis
    Iacono, John
    Langerman, Stefan
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (04) : 822 - 848
  • [4] Incremental Voronoi Diagrams
    Sarah R. Allen
    Luis Barba
    John Iacono
    Stefan Langerman
    Discrete & Computational Geometry, 2017, 58 : 822 - 848
  • [5] Queries with segments in Voronoi diagrams
    Bespamyatnikh, S
    Snoeyink, J
    PROCEEDINGS OF THE TENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1999, : 122 - 129
  • [6] Queries with segments in Voronoi diagrams
    Bespamyatnikh, S
    Snoeyink, J
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2000, 16 (01): : 23 - 33
  • [7] Area Queries Based on Voronoi Diagrams
    Li, Yang
    2020 IEEE 36TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2020), 2020, : 2064 - 2068
  • [8] Queries on Voronoi diagrams of moving points
    Devillers, O
    Golin, M
    Kedem, K
    Schirra, S
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1996, 6 (05): : 315 - 327
  • [9] Cloning Voronoi Diagrams via Retroactive Data Structures
    Dickerson, Matthew T.
    Eppstein, David
    Goodrich, Michael T.
    ALGORITHMS-ESA 2010, 2010, 6346 : 362 - +
  • [10] RANDOMIZED INCREMENTAL CONSTRUCTION OF DELAUNAY AND VORONOI DIAGRAMS
    GUIBAS, LJ
    KNUTH, DE
    SHARIR, M
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 443 : 414 - 431