Dynamical inverse problem for two-velocity systems on finite trees

被引:0
|
作者
Avdonin, Sergei A. [1 ]
Blagoveshchensky, Alexander S. [2 ]
Choque-Rivero, Abdon E. [3 ]
Mikhaylov, Victor S. [2 ,4 ]
机构
[1] Univ Alaska, Dept Math & Stat, Fairbanks, AK 99775 USA
[2] St Petersburg State Univ, Univ Embankment 7-9, St Petersburg 199034, Russia
[3] Univ Michoacana, Inst Fis & Matemat, Morelia 58040, Mich, Mexico
[4] Russian Acad Sci, VA Steklov Inst Math, St Petersburg Dept, 7,Fontanka, St Petersburg 191023, Russia
基金
美国国家科学基金会;
关键词
BOUNDARY CONTROL; SPECTRAL THEORY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the dynamical inverse problem for two velocity systems on finite trees in a time-optimal setting: i.e. we assume that the dynamical Dirichlet-to-Neumann map, which we use as inverse data, is known on some finite interval (the length of this interval depends on the optical diameter of a tree). Using the controllability of a dynamical system and ideas of the Boundary Control method, we can extract the spectral data from the dynamical one, and then extend the dynamical inverse data by an explicit formula, provided we understand it in a suitable (generalized) sense. Then we can construct the Titchmarsh-Weyl function and solve the inverse problem using the leaf-peeling method.
引用
收藏
页码:25 / 30
页数:6
相关论文
共 50 条