A discrete de Rham method for the Reissner-Mindlin plate bending problem on polygonal meshes

被引:5
|
作者
Di Pietro, Daniele A. [1 ]
Droniou, Jerome [2 ]
机构
[1] Univ Montpellier, IMAG, CNRS, Montpellier, France
[2] Monash Univ, Sch Math, Melbourne, Australia
关键词
Reissner-Mindlin plates; Discrete de Rham complex; Locking free method; Compatible discretisations; Polygonal methods; FINITE-ELEMENT-METHOD; HIGH-ORDER METHOD; DISCONTINUOUS GALERKIN; HP-VERSION; DISCRETIZATION;
D O I
10.1016/j.camwa.2022.08.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we propose a discretisation method for the Reissner-Mindlin plate bending problem in primitive variables that supports general polygonal meshes and arbitrary order. The method is inspired by a two-dimensional discrete de Rham complex for which key commutation properties hold that enable the cancellation of the contribution to the error linked to the enforcement of the Kirchhoff constraint. Denoting by k >= 0 the polynomial degree for the discrete spaces and by h the meshsize, we derive for the proposed method an error estimate in h(k+1) for general k, as well as a locking-free error estimate for the lowest-order case k=0. The theoretical results are validated on a complete panel of numerical tests
引用
收藏
页码:136 / 149
页数:14
相关论文
共 50 条
  • [1] An isogeometric method for the Reissner-Mindlin plate bending problem
    da Veiga, L. Beirao
    Buffa, A.
    Lovadina, C.
    Martinelli, M.
    Sangalli, G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 209 : 45 - 53
  • [2] A mimetic discretization of the Reissner-Mindlin plate bending problem
    da Veiga, L. Beirao
    Mora, D.
    NUMERISCHE MATHEMATIK, 2011, 117 (03) : 425 - 462
  • [3] A locking-free weak Galerkin finite element method for Reissner-Mindlin plate on polygonal meshes
    Ye, Xiu
    Zhang, Shangyou
    Zhang, Zhimin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) : 906 - 916
  • [4] Discrete Reissner-Mindlin plate and shell elements
    Sydenstricker, R
    Landau, L
    ADVANCES IN FINITE ELEMENT PROCEDURES AND TECHNIQUES, 1998, : 63 - 71
  • [5] REISSNER-MINDLIN EXTENSIONS OF KIRCHHOFF ELEMENTS FOR PLATE BENDING
    Kikuchi, Fumio
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2005, 2 (01) : 127 - 147
  • [6] Virtual Elements for the Reissner-Mindlin plate problem
    Chinosi, Claudia
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) : 1117 - 1144
  • [7] Preconditioning discrete approximations of the Reissner-Mindlin plate model
    Arnold, DN
    Falk, RS
    Winther, R
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1997, 31 (04): : 517 - 557
  • [8] Kupradze method for solution of Reissner-Mindlin plate boundary value problem
    Myslecki, K
    Szmigielki, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S631 - S632
  • [9] Isogeometric collocation methods for the Reissner-Mindlin plate problem
    Kiendl, J.
    Auricchio, F.
    da Veiga, L. Beirao
    Lovadina, C.
    Reali, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 284 : 489 - 507
  • [10] A ROBUST TRIANGULAR PLATE BENDING ELEMENT OF THE REISSNER-MINDLIN TYPE
    ZIENKIEWICZ, OC
    LEFEBVRE, D
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1988, 26 (05) : 1169 - 1184