On the ideal (ν0)

被引:3
|
作者
Kalemba, Piotr [1 ]
Plewik, Szymon [1 ]
Wojciechowska, Anna [1 ]
机构
[1] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
来源
关键词
base nu-matrix; doughnut; ideal type; ideal (nu(0));
D O I
10.2478/s11533-008-0021-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sigma-ideal (nu(0)) is associated with the Silver forcing, see [5]. Also, it constitutes the family of all completely doughnut null sets, see [9]. We introduce segment topologies to state some resemblances of (nu(0)) to the family of Ramsey null sets. To describe add(nu(0)) we adopt a proof of Base Matrix Lemma. Consistent results are stated, too. Halbeisen's conjecture cov(nu(0))= add(nu(0)) is confirmed under the hypothesis t = min{cf(c);r}. The hypothesis conv(nu(0)) = omega(1) implies that (nu(0)) has the ideal type (c, omega(1), c).
引用
收藏
页码:218 / 227
页数:10
相关论文
共 50 条
  • [1] On some ideal related to the ideal (v0)
    Kalemba, Piotr
    OPEN MATHEMATICS, 2015, 13 : 421 - 425
  • [2] IDEAL 0, 1 MATRICES
    CORNUEJOLS, G
    NOVICK, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 60 (01) : 145 - 157
  • [3] (0, ±1) ideal matrices
    Paolo Nobili
    Antonio Sassano
    Mathematical Programming, 1998, 80 : 265 - 281
  • [4] (0, ±1) ideal matrices
    Nobili, Paolo
    Sassano, Antonio
    Mathematical Programming, Series B, 1998, 80 (03): : 265 - 281
  • [5] (0, ±1) ideal matrices
    Nobili, P
    Sassano, A
    MATHEMATICAL PROGRAMMING, 1998, 80 (03) : 265 - 281
  • [6] Perfect and ideal 0, ±1 matrices
    Guenin, B
    MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (02) : 322 - 338
  • [7] Perfect and ideal 0, ±1 matrices
    GSIA, Carnegie Mellon University, Pittsburgh, PA 15213, United States
    Math Oper Res, 2 (322-338):
  • [8] BOT —0 ideal bei übergewichtigen Zuckerkranken
    Michael Koczorek
    MMW - Fortschritte der Medizin, 2017, 159 (5) : 66 - 66
  • [9] The canonical fractional Galois ideal at s=0
    Buckingham, Paul
    JOURNAL OF NUMBER THEORY, 2008, 128 (06) : 1749 - 1768
  • [10] Notes on "Ideal 0, 1 matrices" by Cornuejols and Novick
    Aguilera, Nestor E.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) : 1109 - 1114