Using Topic Hierarchies with Privileged Information to Improve Context-Aware Recommender Systems

被引:3
|
作者
Sundermann, Camila V. [1 ]
Domingues, Marcos A. [1 ]
Marcacini, Ricardo M. [2 ]
Rezende, Solange O. [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, BR-13560 Sao Carlos, SP, Brazil
[2] Univ Fed Mato Grosso do Sul, Tres Lagoas, MS, Brazil
关键词
Recommender Systems; Text Mining; Topic Hierarchy; Named Entities; Context-Aware Recommender Systems;
D O I
10.1109/BRACIS.2014.22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems are designed to assist individuals to identify items of interest in a set of options. A context-aware recommender system makes recommendations by incorporating available contextual information into the recommendation process. One of the major challenges in context-aware recommender systems research is the lack of automatic methods to obtain contextual information for these systems. Considering this scenario, in this paper, we propose to use contextual information from topic hierarchies to improve the performance of context-aware recommender systems. Three different types of topic hierarchies are constructed by using the LUPI-based Incremental Hierarchical Clustering method: a topic hierarchy using only a traditional bag-of-words, a second topic hierarchy using a bag-of-words of named entities and a third topic hierarchy using both information. We evaluate the contextual information in four context-aware recommender systems. The empirical results demonstrate that by using topic hierarchies we can provide better recommendations.
引用
收藏
页码:61 / 66
页数:6
相关论文
共 50 条
  • [1] Using Contextual Information from Topic Hierarchies to Improve Context-Aware Recommender Systems
    Domingues, Marcos Aurelio
    Manzato, Marcelo Garcia
    Marcacini, Ricardo Marcondes
    Sundermann, Camila Vaccari
    Rezende, Solange Oliveira
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 3606 - 3611
  • [2] Privileged contextual information for context-aware recommender systems
    Sundermann, Camila Vaccari
    Domingues, Marcos Aurelio
    Conrado, Merley da Silva
    Rezende, Solange Oliveira
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2016, 57 : 139 - 158
  • [3] Context-Aware Recommender Systems
    Adomavicius, Gediminas
    Mobasher, Bamshad
    Ricci, Francesco
    Tuzhilin, Alex
    [J]. AI MAGAZINE, 2011, 32 (03) : 67 - 80
  • [4] Context-aware Recommender Systems
    Verbert, Katrien
    Duval, Erik
    Lindstaedt, Stefanie N.
    Gillet, Denis
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2010, 16 (16) : 2175 - 2178
  • [5] Workshop on Context-Aware Recommender Systems
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Ricci, Francesco
    Tuzhilin, Alexander
    Unger, Moshe
    [J]. RECSYS 2019: 13TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2019, : 548 - 549
  • [6] Context-Aware Explanations in Recommender Systems
    Zhong, Jinfeng
    Negre, Elsa
    [J]. PROGRESSES IN ARTIFICIAL INTELLIGENCE & ROBOTICS: ALGORITHMS & APPLICATIONS, 2022, : 76 - 85
  • [7] Workshop on Context-Aware Recommender Systems
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Ricci, Francesco
    Tuzhilin, Alexander
    Unger, Moshe
    [J]. RECSYS 2020: 14TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2020, : 635 - 637
  • [8] Exploration of Word Embedding Model to Improve Context-Aware Recommender Systems
    Sundermann, Camila V.
    Antunes, Joao
    Domingues, Marcos A.
    Rezende, Solange O.
    [J]. 2018 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2018), 2018, : 383 - 388
  • [9] User and Context Information in Context-Aware Recommender Systems: A Systematic Literature Review
    Inzunza, Sergio
    Juarez-Ramirez, Reyes
    Ramirez-Noriega, Alan
    [J]. NEW ADVANCES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, 2016, 444 : 649 - 658
  • [10] Dynamic context management in context-aware recommender systems
    Ali, Waqar
    Kumar, Jay
    Mawuli, Cobbinah Bernard
    She, Lei
    Shao, Jie
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2023, 107