On the Exact Traveling Wave Solutions of (2+1)-Dimensional Higher Order Broer-Kaup Equation
被引:2
|
作者:
Li, Jibin
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
Kunming Univ Sci & Technol, Dept Math, Kunming 650093, Yunnan, Peoples R ChinaZhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
Li, Jibin
[1
,2
]
机构:
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Kunming Univ Sci & Technol, Dept Math, Kunming 650093, Yunnan, Peoples R China
In this paper, we study the dynamical behavior and exact parametric representations of all traveling wave solutions for (2 + 1)-dimensional higher order Broer-Kaup equation. By using the method of dynamical systems, under different parametric conditions, for the solution component U, exact monotonic and nonmonotonic kink wave solutions, two-peak wave solutions, periodic wave solutions, as well as unbounded traveling wave solutions are obtained. Exact wave profiles of traveling wave solutions for all solution components U, V, W, P are shown.
机构:
Huzhou Univ, Coll Sci, Huzhou 313000, Peoples R China
Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R ChinaHuzhou Univ, Coll Sci, Huzhou 313000, Peoples R China