Self-healing shape memory polymers possess the ability to heal macro and micro cracks by autonomic processes or when subjected to a suitable external stimulus. Recent advancements in the field have shown that the healing capabilities of self-healing polymers can be improved, thus yielding to high healing efficiencies. Depending on the application, the efficiency may refer to shape fixity, shape recovery ratio, dimensions recovery, strength regain, crack healing, etc. Based on test results, it is established that there is an intrinsic correlation between pre-strain levels, shape fixing and free shape recovery of samples programmed above the glass transition temperature (Tg). For samples programmed at multiple temperatures (above and below the glass transition temperature), the absence of lateral and 3D confinements lead to poor to no crack healing. Better compressive strength properties were, however, achieved by samples programmed at higher temperatures above Tg.