A Coarse-Grained Model for Epoxy Molding Compound

被引:56
|
作者
Yang, Shaorui [1 ]
Cui, Zhiwei [1 ]
Qu, Jianmin [1 ,2 ]
机构
[1] Northwestern Univ, Dept Engn Mech, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2014年 / 118卷 / 06期
关键词
CROSS-LINKED EPOXY; FORCE-FIELD; MOLECULAR-DYNAMICS; FRACTURE-BEHAVIOR; POLYMER NETWORKS; SIMULATION; CHAINS;
D O I
10.1021/jp409297t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a coarse-grained model for molecular dynamics simulations of an epoxy system composed of epoxy phenol novolac as epoxy monomer and bisphenol-A as the cross-linking agent. The epoxy and hardener molecules are represented as short chains of connected beads, and cross-linking is accomplished by introducing bonds between reactive beads. The interbead potential, composed of Lennard-Jones, bond stretching, and angle bending terms, is parametrized through an optimization process based on a particle swarm optimization method to fit certain key thermomechanical properties of the material obtained from experiments and previous full atomistic simulations. The newly developed coarse-grained model is capable of predicting a number of thermomechanical properties of the epoxy system. The predictions are in very good agreement with available data in the literature. More importantly, our coarse-grained model is capable of predicting tensile failure of the epoxy system, a capability that no other conventional molecular dynamic simulation model has. Finally, our coarse-grained model can speed up the simulations by more than an order of magnitude when compared with traditional molecular dynamic simulations.
引用
收藏
页码:1660 / 1669
页数:10
相关论文
共 50 条
  • [1] Importance of Interface in the Coarse-Grained Model of CNT/Epoxy Nanocomposites
    Duan, Ke
    Li, Li
    Wang, Fei
    Meng, Weishuang
    Hu, Yujin
    Wang, Xuelin
    [J]. NANOMATERIALS, 2019, 9 (10)
  • [2] A polarizable coarse-grained water model for coarse-grained proteins simulations
    Ha-Duong, Tap
    Basdevant, Nathalie
    Borgis, Daniel
    [J]. CHEMICAL PHYSICS LETTERS, 2009, 468 (1-3) : 79 - 82
  • [3] Coarse-grained model of glycosaminoglycans
    Samsonov, S. A.
    Bichmann, L.
    Pisabarro, M. T.
    [J]. EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S172 - S172
  • [4] Coarse-Grained Model of Glycosaminoglycans
    Samsonoy, Sergey A.
    Bichmann, Leon
    Pisabarro, M. Teresa
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (01) : 114 - 124
  • [5] Coarse-grained model for polyelectrolyte complexation
    Andreev, Marat
    Srivastava, Samanvaya
    Li, Lu
    Tirrell, Matthew
    Douglas, Jack
    De Pablo, Juan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [6] The "sugar" coarse-grained DNA model
    Kovaleva, N. A.
    Koroleva , I. P.
    Mazo, M. A.
    Zubova, E. A.
    [J]. JOURNAL OF MOLECULAR MODELING, 2017, 23 (02)
  • [7] The “sugar” coarse-grained DNA model
    N. A. Kovaleva
    I. P. Koroleva (Kikot)
    M. A. Mazo
    E. A. Zubova
    [J]. Journal of Molecular Modeling, 2017, 23
  • [8] A Coarse-Grained Model for Unfolded Proteins
    Ghavami, Ali
    Van der Giessen, Erik
    Onck, Patrick
    [J]. BIOPHYSICAL JOURNAL, 2011, 100 (03) : 59 - 59
  • [9] Electronically Coarse-Grained Model for Water
    Jones, A.
    Cipcigan, F.
    Sokhan, V. P.
    Crain, J.
    Martyna, G. J.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (22)
  • [10] A coarse-grained model for DNA origami
    Reshetnikov, Roman V.
    Stolyarova, Anastasia V.
    Zalevsky, Arthur O.
    Panteleev, Dmitry Y.
    Pavlova, Galina V.
    Klinov, Dmitry V.
    Golovin, Andrey V.
    Protopopova, Anna D.
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (03) : 1102 - 1112