A simple nonparametric approach to estimating the distribution of random coefficients in structural models

被引:16
|
作者
Fox, Jeremy T. [1 ,2 ]
Kim, Kyoo Il [3 ]
Yang, Chenyu [4 ]
机构
[1] Rice Univ, Houston, TX 77251 USA
[2] NBER, Cambridge, MA 02138 USA
[3] Michigan State Univ, E Lansing, MI 48824 USA
[4] Univ Rochester, Simon Business Sch, Rochester, NY 14627 USA
关键词
Random coefficients; Mixtures; Discrete choices; Dynamic programming; Sieve estimation; APPROXIMATION;
D O I
10.1016/j.jeconom.2016.05.018
中图分类号
F [经济];
学科分类号
02 ;
摘要
We explore least squares and likelihood nonparametric mixtures estimators of the joint distribution of random coefficients in structural models. The estimators fix a grid of heterogeneous parameters and estimate only the weights on the grid points, an approach that is computationally attractive compared to alternative nonparamqtric estimators. We provide conditions, under which the estimated distribution function converges to the true distribution in the weak topology on the space of distributions. We verify most of the consistency conditions for three discrete choice models. We also derive the convergence rates of the least squares nonparametric mixtures estimator under additional,restrictions. We perform a Monte Carlo study on a dynamic programming model. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:236 / 254
页数:19
相关论文
共 50 条
  • [1] A Simple Nonparametric Estimator for the Distribution of Random Coefficients in Discrete Choice Models
    Bajari, Patrick
    Fox, Jeremy T.
    Kim, Kyoo Il
    Ryan, Stephen
    QME-QUANTITATIVE MARKETING AND ECONOMICS, 2009, 7 (01): : 95 - 95
  • [2] Nonparametric Estimation in Random Coefficients Binary Choice Models
    Gautier, Eric
    Kitamura, Yuichi
    ECONOMETRICA, 2013, 81 (02) : 581 - 607
  • [3] A simple estimator for the distribution of random coefficients
    Fox, Jeremy T.
    Kim, Kyoo Il
    Ryan, Stephen P.
    Bajari, Patrick
    QUANTITATIVE ECONOMICS, 2011, 2 (03) : 381 - 418
  • [4] Nonparametric identification and estimation of random coefficients in multinomial choice models
    Fox, Jeremy T.
    Gandhi, Amit
    RAND JOURNAL OF ECONOMICS, 2016, 47 (01): : 118 - 139
  • [5] Nonparametric estimation of the random coefficients model: An elastic net approach
    Heiss, Florian
    Hetzenecker, Stephan
    Osterhaus, Maximilian
    JOURNAL OF ECONOMETRICS, 2022, 229 (02) : 299 - 321
  • [6] Nonparametric identification of random coefficients in aggregate demand models for differentiated products
    Dunker, Fabian
    Hoderlein, Stefan
    Kaido, Hiroaki
    ECONOMETRICS JOURNAL, 2023, 26 (02): : 279 - 306
  • [7] Nonparametric Maximum Likelihood Methods for Binary Response Models With Random Coefficients
    Gu, Jiaying
    Koenker, Roger
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (538) : 732 - 751
  • [8] Simple analytical models for estimating the queue lengths from probe vehicles at traffic signals: A combinatorial approach for nonparametric models
    Comert, Gurcan
    Amdeberhan, Tewodros
    Begashaw, Negash
    Medhin, Negash G.
    Chowdhury, Mashrur
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
  • [9] Efficiently estimating the error distribution in nonparametric regression with responses missing at random
    Chown, Justin
    Mueller, Ursula U.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (03) : 665 - 677
  • [10] Estimating some characteristics of the conditional distribution in nonparametric functional models
    Ferraty F.
    Laksaci A.
    Vieu P.
    Statistical Inference for Stochastic Processes, 2006, 9 (1) : 47 - 76