Dynamic spatial fusion of cloud top phase from PARASOL, CALIPSO, cloudsat satellite data

被引:2
|
作者
Chen, Zhenting [1 ,2 ,3 ]
Sun, Xiaobing [2 ]
机构
[1] Kunming Univ, Inst Informat Technol, Kunming, Yunnan, Peoples R China
[2] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Key Lab Opt Calibrat & Characterizat, Hefei, Anhui, Peoples R China
[3] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
关键词
Cloud phase; Polder3; Calipso; Cloudsat; Modis; Spatial fusion; CIRRUS CLOUDS; EFFECTIVE RADIUS; POLDER; RETRIEVAL; CLIMATE; IMAGERY;
D O I
10.1016/j.jqsrt.2018.11.010
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Cloud phase is one of the important parameters of weather and climate research and core elements of atmospheric cloud parametric inversion. The accuracy of its recognition directly influences the inversion precision of cloud optical thickness, spherical albedo, effective particle radius, ice/liquid water content and other parameters. In this paper, we combine with cloud phase products of spaceborne multi-angle polarimetric radiometer, polarized laser radar, and millimeter wave radar. Next, we put forward a Dynamic Spatial Optimal Fusion (DSOF) algorithm. In this algorithm we construct the spatial optimal fusion rules of Cloud Top Phase (CTP) for multi-source data. Finally, we realize the cloud phase spatial fusion using these rules. We used the typhoon "Lupit" as the research object and verified this method. The standard deviations are 4.67%, 7.18%, 40.14% and 36.51%, respectively, compared the results of fused CTP to that of CALIPSO, CloudSat, POLDERS and MODIS. The fusion results are most close to the CTP of CALIPSO. The results show that this method can effectively achieve multi-source cloud phase inversion, and provide new technology for the development and data synergy of spaceborne multi-sensor satellite. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:176 / 184
页数:9
相关论文
共 50 条
  • [1] Dynamic Spatial Fusion of Cloud Vertical Phase from CALIPSO and CloudSat Satellite Data
    Chen, Zhenting
    Wang, Junfeng
    Gao, Dongyang
    Xu, Bing
    Yu, Wenjie
    Yang, Min
    [J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2021, 87 (01): : 61 - 67
  • [2] Dust aerosol impact on the retrieval of cloud top height from satellite observations of CALIPSO, CloudSat and MODIS
    Wang, Wencai
    Sheng, Lifang
    Dong, Xu
    Qu, Wenjun
    Sun, Jilin
    Jin, Hongchun
    Logan, Timothy
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 188 : 132 - 141
  • [3] Joint analysis of cloud top heights from CloudSat and CALIPSO: New insights into cloud top microphysics
    Hagihara, Yuichiro
    Okamoto, Hajime
    Luo, Zhengzhao Johnny
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (07) : 4087 - 4106
  • [4] Temporal and Spatial Variations of Global Deep Cloud Systems Based on CloudSat and CALIPSO Satellite Observations
    PENG Jie
    ZHANG Hua
    Zhanqing LI
    [J]. Advances in Atmospheric Sciences, 2014, 31 (03) : 593 - 603
  • [5] Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations
    Jie, Peng
    Hua, Zhang
    Li, Zhanqing
    [J]. ADVANCES IN ATMOSPHERIC SCIENCES, 2014, 31 (03) : 593 - 603
  • [6] Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations
    Jie Peng
    Hua Zhang
    Zhanqing Li
    [J]. Advances in Atmospheric Sciences, 2014, 31 : 593 - 603
  • [7] Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals
    Weisz, Elisabeth
    Li, Jun
    Menzel, W. Paul
    Heidinger, Andrew K.
    Kahn, Brian H.
    Liu, Chian-Yi
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (17)
  • [8] Arctic cloud macrophysical characteristics from CloudSat and CALIPSO
    Liu, Yinghui
    Key, Jeffrey R.
    Ackerman, Steven A.
    Mace, Gerald G.
    Zhang, Qiuqing
    [J]. REMOTE SENSING OF ENVIRONMENT, 2012, 124 : 159 - 173
  • [9] Spatial Distributions of Cloud Occurrences in Terms of Volume Fraction as Inferred from CloudSat and CALIPSO
    Ding, Yuhao
    Liu, Qi
    Lao, Ping
    Li, Meng
    Li, Yuan
    Zheng, Qun
    Peng, Yanghui
    [J]. REMOTE SENSING, 2023, 15 (16)
  • [10] Retrieval of ice cloud microphysics by synergy use of CloudSat and CALIPSO data
    Okamoto, Hajime
    Sato, Kaori
    Hagihara, Yuichiro
    [J]. CURRENT PROBLEMS IN ATMOSPHERIC RADIATION (IRS 2008), 2009, 1100 : 412 - 415