Effects of magnetic field orientation on optical decoherence in Er3+:Y2SiO5

被引:134
|
作者
Boettger, Thomas [1 ,2 ]
Thiel, C. W. [2 ]
Cone, R. L. [2 ]
Sun, Y. [2 ,3 ]
机构
[1] Univ San Francisco, Dept Phys & Astron, San Francisco, CA 94117 USA
[2] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA
[3] Univ S Dakota, Dept Phys, Vermillion, SD 57069 USA
关键词
erbium; excited states; g-factor; ground states; magnetic anisotropy; magnetic field effects; magnetic moments; photon echo; yttrium compounds; Zeeman effect; LASER FREQUENCY STABILIZATION; 1536; NM; SPECTRAL DIFFUSION; MEMORY; CODES; HOLES;
D O I
10.1103/PhysRevB.79.115104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The influence of the anisotropic Zeeman effect on optical decoherence was studied for the 1.54 mu m telecom transition in Er3+:Y2SiO5 using photon echo spectroscopy as a function of applied magnetic field orientation and strength. The decoherence strongly correlates with the Zeeman energy splittings described by the ground- and excited-state g factor variations for all inequivalent Er3+ sites, with the observed decoherence times arising from the combined effects of the magnetic dipole-dipole coupling strength and the ground- and excited-state spin-flip rates, along with the natural lifetime of the upper level. The decoherence time was maximized along a preferred magnetic field orientation that minimized the effects of spectral diffusion and that enabled the measurement of an exceptionally narrow optical resonance in a solid-demonstrating a homogeneous linewidth as narrow as 73 Hz.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Optical decoherence and spectral diffusion at 1.5 μm in Er3+:Y2SiO5 versus magnetic field, temperature, and Er3+ concentration
    Böttger, T
    Thiel, CW
    Sun, Y
    Cone, RL
    PHYSICAL REVIEW B, 2006, 73 (07)
  • [2] Effects of disorder on optical and electron spin linewidths in Er3+,Sc3+:Y2SiO5
    Welinski, S.
    Thiel, C. W.
    Dajczgewand, J.
    Ferrier, A.
    Cone, R. L.
    Macfarlane, R. M.
    Chaneliere, T.
    Louchet-Chauvet, A.
    Goldner, P.
    OPTICAL MATERIALS, 2017, 63 : 69 - 75
  • [3] Zeeman-level lifetimes in Er3+ : Y2SiO5
    Hastings-Simon, S. R.
    Lauritzen, B.
    Staudt, M. U.
    van Mechelen, J. L. M.
    Simon, C.
    de Riedmatten, H.
    Afzelius, M.
    Gisin, N.
    PHYSICAL REVIEW B, 2008, 78 (08):
  • [4] Spectroscopy and dynamics of Er3+:Y2SiO5 at 1.5 μm
    Bottger, Thomas
    Sun, Y.
    Thiel, C. W.
    Cone, R. L.
    PHYSICAL REVIEW B, 2006, 74 (07)
  • [5] Electron paramagnetic resonance spectroscopy of Er3+:Y2SiO5 for coherent optical applications
    Guillot-Noël, O.
    Goldner, Ph.
    Le Du, Y.
    Baldit, E.
    Monnier, P.
    Bencheikh, K.
    Journal of Alloys and Compounds, 1600, 451 (1-2): : 62 - 64
  • [6] Electron paramagnetic resonance spectroscopy of Er3+: y2SiO5 for coherent optical applications
    Guillot-Noel, O.
    Goldner, Ph.
    Le Du, Y.
    Baldit, E.
    Monnier, P.
    Bencheikh, K.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2008, 451 (1-2) : 62 - 64
  • [7] Optical decoherence studies of yttrium oxyorthosilicate Y2SiO5 codoped with Er3+ and Eu3+ for optical signal processing and quantum information applications at 1.5 microns
    Thiel, C. W.
    Babbitt, W. R.
    Cone, R. L.
    PHYSICAL REVIEW B, 2012, 85 (17)
  • [8] Stark shift in Y2SiO5:Er3+ by the photon echo beating method
    Lisin, V. N.
    Shegeda, A. M.
    Samartsev, V. V.
    Kutovoi, S. A.
    Zavartsev, Yu D.
    LASER PHYSICS, 2019, 29 (01)
  • [9] Photoluminescence of focused ion beam implanted Er3+: Y2SiO5 crystals
    Kukharchyk, Nadezhda
    Pal, Shovon
    Roediger, Jasper
    Ludwig, Arne
    Probst, Sebastian
    Ustinov, Alexey V.
    Bushev, Pavel
    Wieck, Andreas D.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2014, 8 (10): : 880 - 884
  • [10] Cavity-enhanced Raman heterodyne spectroscopy in Er3+:Y2SiO5 for microwave to optical signal conversion
    Fernandez-Gonzalvo, Xavier
    Horvath, Sebastian P.
    Chen, Yu-Hui
    Longdell, Jevon J.
    PHYSICAL REVIEW A, 2019, 100 (03)