On defensive alliances and strong global offensive alliances

被引:3
|
作者
Dourado, Mitre C. [1 ,2 ]
Faria, Luerbio [3 ]
Pizana, Miguel A. [4 ]
Rautenbach, Dieter [5 ]
Szwarcfiter, Jayme L. [1 ,2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, NCE, Rio De Janeiro, RJ, Brazil
[2] Univ Fed Rio de Janeiro, COPPE, Rio De Janeiro, Brazil
[3] Univ Estado Rio de Janeiro, FFP, BR-20550011 Rio De Janeiro, Brazil
[4] Univ Autonoma Metropolitana Iztapalapa, Dept Ingn Elect, Mexico City, DF, Mexico
[5] Univ Ulm, Inst Optimierung & Operat Res, Ulm, Germany
关键词
Defensive alliance; Strong global offensive alliance; DOMINATION; NUMBER;
D O I
10.1016/j.dam.2013.06.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider complexity issues and upper bounds for defensive alliances and strong global offensive alliances in graphs. We prove that it is NP-complete to decide for a given 6-regular graph G and a given integer a, whether G contains a defensive alliance of order at most a. Furthermore, we prove that determining the strong global offensive alliance number gamma(o)(G) of a graph G is APX-hard for cubic graphs and NP-hard for chordal graphs. For a graph G of minimum degree at least 2, we prove gamma(o)(G) <= 3n(G)/4, which improves previous results by Favaron et al. and Sigarreta and Rodriguez. Finally, we prove gamma(o)(G) <= (1/2 + (1 + o(delta(G))) In(delta(G)+1)/delta(G)+1)n(G). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:136 / 141
页数:6
相关论文
共 50 条
  • [1] OFFENSIVE AND DEFENSIVE USES OF ALLIANCES
    LEI, D
    [J]. LONG RANGE PLANNING, 1993, 26 (04) : 32 - 41
  • [2] Global defensive alliances
    Haynes, TW
    Hedetniemi, ST
    Henning, MA
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL SYMPOSIUM ON COMPUTER AND INFORMATION SCIENCES, 2003, : 303 - 307
  • [3] Global Defensive Alliances in Trees
    Bouzefrane, Mohamed
    Chellali, Mustapha
    Haynes, Teresa W.
    [J]. UTILITAS MATHEMATICA, 2010, 82 : 241 - 252
  • [4] Global defensive alliances in graphs
    Haynes, TW
    Hedetniemi, ST
    Henning, MA
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2003, 10 (01):
  • [5] Global Strong Defensive Alliances of Sierpinski-Like Graphs
    Lin, Chien-Hung
    Liu, Jia-Jie
    Wang, Yue-Li
    [J]. THEORY OF COMPUTING SYSTEMS, 2013, 53 (03) : 365 - 385
  • [6] A note on the global offensive alliances in graphs
    Rad, Nader Jafari
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 250 : 373 - 376
  • [7] Restrained Global Defensive Alliances in Graphs
    Consistente, Leocint F.
    Cabahug Jr, Isagani S.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 2196 - 2209
  • [8] Global defensive alliances in star graphs
    Hsu, Cheng-Ju
    Wang, Fu-Hsing
    Wang, Yue-Li
    [J]. DISCRETE APPLIED MATHEMATICS, 2009, 157 (08) : 1924 - 1931
  • [9] Global Strong Defensive Alliances of Sierpiński-Like Graphs
    Chien-Hung Lin
    Jia-Jie Liu
    Yue-Li Wang
    [J]. Theory of Computing Systems, 2013, 53 : 365 - 385
  • [10] On global offensive k-alliances in graphs
    Bermudo, Sergio
    Rodriguez-Velazquez, Juan A.
    Sigarreta, Jose M.
    Yero, Ismael G.
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (12) : 1454 - 1458