Contractions of Lie algebras: applications to special functions and separation of variables

被引:16
|
作者
Kalnins, EG [1 ]
Miller, W
Pogosyan, GS
机构
[1] Univ Waikato, Dept Math & Stat, Hamilton, New Zealand
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Joint Nucl Res Inst, Theoret Phys Lab, Dubna 141980, Moscow Region, Russia
来源
关键词
D O I
10.1088/0305-4470/32/25/312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the consequences of contraction of the Lie algebras of the orthogonal groups to the Lie algebras of the Euclidean groups in terms of separation of variables for Laplace Beltrami eigenvalue equations, and the solutions of these equations that arise through separation of variables techniques, on the N-sphere and in N-dimensional Euclidean space. General ellipsoidal and paraboloidal coordinates are included, not just the subgroup-type coordinates that have been the concern of most investigations of contractions as applied to special functions. We pay special attention to the case N = 2 where we show in detail, for example, how Lame polynomials contract to periodic Mathieu functions. Our point of view emphasizes the characterization of separable polynomial eigenfunctions in terms of the zeros of these eigenfunctions. We also consider all possible separable coordinate systems on the complex two-sphere (which includes real hyperboloids as special cases) and their contraction to flat space coordinates.
引用
收藏
页码:4709 / 4732
页数:24
相关论文
共 50 条
  • [1] Separation of variables and Lie algebra contractions. Applications to special functions
    Pogosyan, G
    Sissakian, A
    Winternitz, P
    PHYSICS OF PARTICLES AND NUCLEI, 2002, 33 : S123 - S144
  • [2] Contractions of Lie algebras and separation of variables
    Izmest'ev, A. A.
    Pogosyan, G. S.
    Sissakian, A. N.
    Winternitz, P.
    Journal of Physics A: Mathematical and General, 29 (18):
  • [3] Contractions of Lie algebras and separation of variables
    Izmestev, AA
    Pogosyan, GS
    Sissakian, AN
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (18): : 5949 - 5962
  • [4] Contractions of Lie algebras and the separation of variables: interbase expansions
    Izmest'ev, AA
    Pogosyan, GS
    Sissakian, AN
    Winternitz, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 521 - 554
  • [5] Contractions of Lie algebras and separation of variables.: The n-dimensional sphere
    Izmest'ev, AA
    Pogosyan, GS
    Sissakian, AN
    Winternitz, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (03) : 1549 - 1573
  • [6] Contractions of Lie algebras and separation of variables. Two-dimensional hyperboloid
    Izmestev, AA
    Pogosyan, GS
    Sissakian, AN
    Winternitz, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (01): : 53 - 61
  • [7] Lie algebra contractions and separation of variables
    Izmest'ev, AA
    Winternitz, P
    Pogosyan, GS
    Sissakian, AN
    PHYSICS OF PARTICLES AND NUCLEI, 2001, 32 : S41 - S42
  • [8] Lie group contractions and separation of variables
    Winternitz, P
    PHYSICS OF ATOMIC NUCLEI, 1998, 61 (10) : 1705 - 1712
  • [9] Contractions of Lie Algebras and Separation of Variables, Two-Dimensional Hyperboloid Integrable Systems Algebraic Methods and Lie Algebra Contractions
    Izmest'ev, A. A.
    Pogosyan, G. S.
    Sissakian, A. N.
    International Journal of Modern Physics A, 12 (01):
  • [10] Contractions of invariants of Lie algebras with applications to classical inhomogeneous Lie algebras
    Weimar-Woods, Evelyn
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)