Droplet Mechanical Hand Based on Anisotropic Water Adhesion of Hydrophobic-Superhydrophobic Patterned Surfaces

被引:16
|
作者
Yang, Xiaolong [1 ]
Choi, Won Tae [2 ]
Liu, Jiyu [3 ]
Liu, Xin [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Natl Key Lab Sci & Technol Helicopter Transmiss, Nanjing 210016, Jiangsu, Peoples R China
[2] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[3] Dalian Univ Technol, Key Lab Precis & Nontradit Machining Technol, Minist Educ, Dalian 116023, Peoples R China
关键词
MAGNETIC DROPLETS; WETTABILITY; TRANSPORTATION; MICROARRAY; ARRAY; MICRODROPLETS; CHIP;
D O I
10.1021/acs.langmuir.8b03969
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Superhydrophobic copper surfaces patterned with non-round hydrophobic areas were fabricated by a combination of through-mask chemical oxidation and fluorocarbon film deposition techniques. The anisotropic sliding resistance of droplets on typical non-round hydrophobic patterns such as semicircle, V-shape, and line segment hydrophobic patterns was observed. The dependence of sliding anisotropy on the pattern shape and dimensions was investigated. Results showed that the experimental sliding resistance was in good agreement with the calculated data using a classical drag resistance model (Furmidge equation). By taking advantage of the anisotropic sliding resistance, these patterned surfaces can be used as droplet mechanical hands to capture, transfer, mix, and release in situ micro droplets by simply moving the surfaces in different directions. A droplet pinned on a non-round hydrophobic pattern can be captured by lifting a surface with another non-round hydrophobic pattern in a large-sliding-resistance direction after touching it, while the captured droplet can be released in situ with nearly no mass loss by horizontally moving the surface in the low-sliding-resistance direction. The lossless droplet manipulations using hydrophobic/superhydrophobic patterned surfaces have advantages of being low in cost and easy to operate and may have great promising applications to high throughput drug screening, molecular detection, and other lab-on-chip devices.
引用
收藏
页码:935 / 942
页数:8
相关论文
共 50 条
  • [1] Controllable Water Adhesion and Anisotropic Sliding on Patterned Superhydrophobic Surface for Droplet Manipulation
    Yang, Xiaolong
    Liu, Xin
    Lu, Yao
    Song, Jinlong
    Huang, Shuai
    Zhou, Shining
    Jin, Zhuji
    Xu, Wenji
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (13): : 7233 - 7240
  • [2] Droplet Regulation and Dropwise Condensation Heat Transfer Enhancement on Hydrophobic-Superhydrophobic Hybrid Surfaces
    Lan, Zhong
    Chen, Yansong
    Hu, Shaobo
    Yin, Guangzhao
    Ma, Xuehu
    HEAT TRANSFER ENGINEERING, 2018, 39 (17-18) : 1540 - 1551
  • [3] Directional Mobility and Adhesion of Water Drops on Patterned Superhydrophobic Surfaces
    Balu, Balamurali
    Berry, Adam D.
    Patel, Kanak T.
    Breedveld, Victor
    Hess, Dennis W.
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2011, 25 (6-7) : 627 - 642
  • [4] Droplet Impact on Anisotropic Superhydrophobic Surfaces
    Guo, Chunfang
    Zhao, Danyang
    Sun, Yanjun
    Wang, Minjie
    Liu, Yahua
    LANGMUIR, 2018, 34 (11) : 3533 - 3540
  • [5] Droplet evaporation on heated hydrophobic and superhydrophobic surfaces
    Dash, Susmita
    Garimella, Suresh V.
    PHYSICAL REVIEW E, 2014, 89 (04):
  • [6] Nanostructures Increase Water Droplet Adhesion on Hierarchically Rough Superhydrophobic Surfaces
    Teisala, Hannu
    Tuominen, Mikko
    Aromaa, Mikko
    Stepien, Milena
    Makela, Jyrki M.
    Saarinen, Jarkko J.
    Toivakka, Martti
    Kuusipalo, Jurkka
    LANGMUIR, 2012, 28 (06) : 3138 - 3145
  • [7] Droplet adhesion to hydrophobic fibrous surfaces
    Jamali, M.
    Moghadam, A.
    Tafreshi, H. Vahedi
    Pourdeyhimi, B.
    APPLIED SURFACE SCIENCE, 2018, 456 : 626 - 636
  • [8] Water Droplet Adhesion on Hydrophobic Surfaces: Influence of Droplet Size and Inclination Angle of Surface on Adhesion Force
    Al-Sharafi, Abdullah
    Yilbas, Bekir S.
    Ali, Haider
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (08):
  • [9] DROPLET MANIPULATION ON HIGH ADHESION SUPERHYDROPHOBIC SURFACES
    Ishii, Daisuke
    Shimomura, Masatusgu
    Yabu, Hiroshi
    BIODEVICES 2009: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ELECTRONICS AND DEVICES, 2009, : 113 - +
  • [10] Droplet impact on hydrophobic and superhydrophobic surfaces with the electrowetting technique
    Kumar, Ajit
    Pathak, Manabendra
    CHEMICAL ENGINEERING SCIENCE, 2023, 281