OPTIMAL BOUNDS FOR TOADER MEAN IN TERMS OF ARITHMETIC AND CONTRAHARMONIC MEANS

被引:17
|
作者
Song, Ying-Qing [1 ]
Jiang, Wei-Dong [2 ]
Chu, Yu-Ming [1 ]
Yan, Dan-Dan [3 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
[2] Weihai Vocat Coll, Dept Informat Engn, Weihai 264210, Peoples R China
[3] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
来源
关键词
Contraharmonic mean; arithmetic mean; Toader mean; complete elliptic integrals; INEQUALITIES;
D O I
10.7153/jmi-07-68
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find the greatest value alpha(1) and alpha(2), and the least values beta(1) and beta(2), such that the double inequalities alpha C-1(a, b)+(1-alpha(1))A(a, b) < T(a, b) < beta C-1(a, b)+(1-beta(1))A(a, b) and alpha(2)/A(a, b)+(1-alpha(2))/C(a, b) < 1/T(a, b) < beta(2)/A(a, b)+(1-beta(2))/C(a, b) hold for all a, b > 0 with a not equal b. As applications, we get new bounds for the complete elliptic integral of the second kind. Here, C(a, b) = (a(2) + b(2))/(a+b), A(a, b) = (a+b)/2, and T(a, b) = 2/pi integral(pi/2)(0) root a(2)cos(2)theta + b(2)sin(2)theta d theta denote the contraharmonic, arithmetic, and Toader means of two positive numbers a and b, respectively.
引用
收藏
页码:751 / 757
页数:7
相关论文
共 50 条
  • [1] Sharp Bounds for Toader Mean in terms of Arithmetic and Second Contraharmonic Means
    Qian, Wei-Mao
    Song, Ying-Qing
    Zhang, Xiao-Hui
    Chu, Yu-Ming
    [J]. JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [2] SHARP BOUNDS FOR THE TOADER MEAN OF ORDER 3 IN TERMS OF ARITHMETIC, QUADRATIC AND CONTRAHARMONIC MEANS
    Chu, Hong-Hu
    Zhao, Tie-Hong
    Chu, Yu-Ming
    [J]. MATHEMATICA SLOVACA, 2020, 70 (05) : 1097 - 1112
  • [3] SHARP BOUNDS FOR TOADER MEAN IN TERMS OF CONTRAHARMONIC MEAN WITH APPLICATIONS
    Chu, Yu-Ming
    Wang, Miao-Kun
    Ma, Xiao-Yan
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (02): : 161 - 166
  • [4] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Zhen-Hang Yang
    Jing-Feng Tian
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [5] Optimal bounds for Toader mean in terms of general means
    Qian Zhang
    Bing Xu
    Maoan Han
    [J]. Journal of Inequalities and Applications, 2020
  • [6] Bounds for Toader Mean in Terms of Arithmetic and Second Seiffert Means
    He, Zai-Yin
    Jiang, Yue-Ping
    Chug, Yu-Ming
    [J]. COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 561 - 570
  • [7] BOUNDS FOR THE ARITHMETIC MEAN IN TERMS OF THE TOADER MEAN AND OTHER BIVARIATE MEANS
    Hua, Yun
    [J]. MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 203 - 210
  • [8] Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means
    Chu, Hong-Hu
    Qian, Wei-Mao
    Chu, Yu-Ming
    Song, Ying-Qing
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 3424 - 3432
  • [9] The Best Bounds for Toader Mean in Terms of the Centroidal and Arithmetic Means
    Hua, Yun
    Qi, Feng
    [J]. FILOMAT, 2014, 28 (04) : 775 - 780
  • [10] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Yang, Zhen-Hang
    Tian, Jing-Feng
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)